Câu hỏi:

09/08/2022 1,482

Cho tam giác ABC (không có hai góc nào bằng nhau, không có hai cạnh nào bằng nhau) bằng tam giác có ba đỉnh O, H, K. Biết \(\widehat A = \widehat O,\widehat B = \widehat K.\) Kí hiệu về sự bằng nhau của hai tam giác là:

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án đúng là: D

Vì tam giác ABC và tam giác có ba đỉnh O, H, K bằng nhau, lại có \(\widehat A = \widehat O,\widehat B = \widehat K.\)

Do đó, nếu hai tam giác đó bằng nhau thì:

+ Đỉnh A của tam giác ABC tương ứng với đỉnh O của tam giác OHK;

+ Đỉnh B của tam giác ABC tương ứng với đỉnh K của tam giác OHK.

Khi đó đỉnh C của tam giác ABC tương ứng với đỉnh H của tam giác OHK.

Vậy kí hiệu bằng nhau của hai tam giác này là: DABC = DOKH.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

Cho DABC = DMNP. Khẳng định nào sau đây là đúng?

Lời giải

Đáp án đúng là: A

DABC = DMNP nên ta có:

+) \(\widehat {ABC} = \widehat {MNP}\) (hai góc tương ứng). Do đó A là đúng, B là sai.

+) AB = MN, BC = NP (các cặp cạnh tương ứng). Do đó C và D là sai.

Vậy ta chọn phương án A.

Câu 2

Cho hai tam giác ABC và MNP như hình vẽ dưới đây:

Cho hai tam giác ABC và MNP như hình vẽ dưới đây: (ảnh 1)

Khẳng định nào sau đây là đúng?

Lời giải

Đáp án đúng là: C

Xét tam giác ABC ta có: \(\widehat A + \widehat B + \widehat C = 180^\circ \) (định lí tổng ba góc trong một tam giác)

Suy ra \(\widehat A = 180^\circ - \widehat B - \widehat C\)

Hay \(\widehat A = 180^\circ - 50^\circ - 70^\circ = 60^\circ \)

Xét tam giác MNP ta có: \(\widehat M + \widehat N + \widehat P = 180^\circ \) (định lí tổng ba góc trong một tam giác)

Suy ra \(\widehat M = 180^\circ - \widehat N - \widehat P\)

Hay \(\widehat M = 180^\circ - 60^\circ - 70^\circ = 50^\circ \)

Khi đó: tam giác ABC và tam giác MNP có:

+) AB = NM, BC = MP, AC = NP;

+) \(\widehat A = \widehat N\left( { = 60^\circ } \right),\widehat B = \widehat M\left( { = 50^\circ } \right),\widehat C = \widehat P\left( { = 70^\circ } \right)\)

Do đó hai tam giác ABC và MNP bằng nhau và được kí hiệu là DABC = DNMP.

Vậy ta chọn phương án C.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP