Câu hỏi:

09/08/2022 414

Xét bài toán “DOAB và DOAC có AB = AC, OB = OC (điểm O nằm ngoài tam giác ABC). Chứng minh rằng \(\widehat {OAB} = \widehat {OAC}\).”

Cho các câu sau:

(1) Suy ra DOAB = DOAC (c.c.c);

(2) AB = AC (giả thiết),

OB = OC (giả thiết),

OA là cạnh chung;

(3) Do đó \(\widehat {OAB} = \widehat {OAC}\) (hai góc tương ứng).

(4) Xét DOAB và DOAC có:

Hãy sắp xếp một cách hợp lí các câu trên để giải bài toán.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án đúng là: B

Ta đi chứng minh \(\widehat {OAB} = \widehat {OAC}\) như sau:

Xét bài toán “OAB và OAC có AB = AC, OB = OC (điểm O  (ảnh 1)

Xét DOAB và DOAC có:

AB = AC (giả thiết),

OB = OC (giả thiết),

OA là cạnh chung;

Suy ra DOAB = DOAC (c.c.c);

Do đó \(\widehat {OAB} = \widehat {OAC}\) (hai góc tương ứng).

Vậy ta chọn phương án B.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án đúng là: B

Xét tam giác ABD và tam giác ACD có:

AB = AC, BD = CD, AD là cạnh chung

Suy ra DABD = DACD (c.c.c)

Do đó \(\widehat {BAD} = \widehat {CAD},\widehat B = \widehat C,\widehat {BDA} = \widehat {CDA}\) (các cặp cạnh tương ứng)

Nên \(\widehat {BDA} = \widehat {CDA} = 60^\circ \)

Xét tam giác ABD có: \(\widehat {BAD} + \widehat B + \widehat {BDA} = 180^\circ \) (tổng ba góc trong một tam giác)

Suy ra \[\widehat {BAD} = 180^\circ  - \widehat B - \widehat {BDA}\]

Hay \[\widehat {BAD} = 180^\circ - 100^\circ - 60^\circ = 20^\circ \]

\(\widehat {BAD} = \widehat {CAD}\) nên \(\widehat {BAD} = \widehat {CAD} = 20^\circ \)

Mặt khác \(\widehat {BAC} = \widehat {BAD} + \widehat {CAD} = 20^\circ + 20^\circ = 40^\circ \)

Vậy số đo của \(\widehat {BAC}\) bằng 40°.

Câu 2

Lời giải

Đáp án đúng là: D

Xét tam giác ABC và tam giác ACD có:

AB = CD, BC = DA, AC là cạnh chung

Suy ra DABC = DCDA (c.c.c)

Do đó \(\widehat {BAC} = \widehat {DCA}\) (hai góc tương ứng)

\(\widehat {DCA} = 120^\circ \)

Nên \(\widehat {BAC} = 120^\circ \)

Mặt khác: DABC = DCDA (chứng minh trên)

Suy ra \(\widehat {DAC} = \widehat {BCA}\) (hai góc tương ứng)

Mà hai góc này ở vị trí so le trong

Do đó AD // BC (dấu hiệu nhận biết)

Vậy \(\widehat {BAC} = 120^\circ \) và AD // BC.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP