Câu hỏi:

09/08/2022 336

Cho tứ giác ABCD, AB // DC, AB = DC, O là giao điểm của AC và BC. Khẳng định nào sau đây là đúng:

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án đúng là: C

Cho tứ giác ABCD, AB // DC, AB = DC, O là giao điểm của AC (ảnh 1)

Vì AB // CD (giả thiết) nên \(\widehat {BAC} = \widehat {DCA}\)\(\widehat {ABD} = \widehat {CDB}\) (các cặp góc so le trong)

Xét DOAB và DOCD có:

\[\widehat {BAO} = \widehat {DCO}\] (do \[\widehat {BAC} = \widehat {DCA}\]),

AB = CD (giả thiết),

\(\widehat {ABO} = \widehat {CDO}\) (do \(\widehat {ABD} = \widehat {CDB}\))

Do đó DOAB = DOCD (g.c.g)

Suy ra OA = OC và OB = OD (các cặp cạnh tương ứng)

Xét DAOD và DCOB có:

OA = OC (chứng minh trên),

\(\widehat {AOD} = \widehat {COB}\) (hai góc đối đỉnh),

OD = OB (chứng minh trên)

Do đó DAOD = DCOB (g.c.g)

Suy ra AD = CB (hai cạnh tương ứng)

Vậy ta chọn phương án C.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án đúng là: A

Cho tam giác ABC và tam giác DEF có góc A = góc D, góc B (ảnh 1)

Để DABC = DDEF theo trường hợp góc – cạnh – góc mà \(\widehat A = \widehat D,\widehat B = \widehat E\) nên điều kiện còn thiếu là điều kiện về cạnh, sao cho hai cặp góc bằng nhau là hai cặp góc kề với cặp cạnh này, đó là AB = DE.

Vậy ta chọn phương án A.

Lời giải

Đáp án đúng là: B

Để ABE = DACF theo trường hợp góc – cạnh – góc với \(\widehat {ABE} = \widehat {ACF}\)\(\widehat A\) chung thì cần thêm điều kiện về cạnh, sao cho hai cặp góc bằng nhau ở trên là hai góc kề của cặp cạnh đó.

Do đó điều điện cần thêm là AB = AC.

Vậy ta chọn phương án B.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP