Câu hỏi:

18/08/2022 2,224

Các giá trị m để bất phương trình x2 – (m + 2)x + 8m + 1 < 0 luôn có nghiệm

Đáp án chính xác

Sách mới 2k7: 30 đề đánh giá năng lực DHQG Hà Nội, Tp. Hồ Chí Minh, BKHN 2025 mới nhất (chỉ từ 110k).

Mua bộ đề Hà Nội Mua bộ đề Tp. Hồ Chí Minh Mua đề Bách Khoa

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án đúng là: B

Để bất phương trình x2 – (m + 2)x + 8m + 1 < 0 luôn có nghiệm khi và chỉ khi ∆ 0

\( \Leftrightarrow \) (m + 2)2 – 4(8m + 1) 0 \( \Leftrightarrow \) m2 – 28m 0

Xét f(m) = m2 – 28m có ∆ = 784 > 0 có hai nghiệm là m = 0; m = 28 và a = 1 > 0. Ta có bảng xét dấu

m

–∞                0                28                  + ∞

f(m)

           +        0               0         +

Từ bảng xét dấu ta có để m2 – 28m 0 thì m 0 hoặc m 28.

Vậy với m 0 hoặc m 28 thì phương trình đã cho có nghiệm.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Tập nghiệm của bất phương trình x2 – x – 6 ≤ 0 là:

Xem đáp án » 29/05/2024 12,241

Câu 2:

Tập nghiệm của bất phương trình x2 – 1 > 0 là:

Xem đáp án » 18/08/2022 7,975

Câu 3:

Tập nghiệm của bất phương trình x2 + 4x + 4 > 0 là:

Xem đáp án » 18/08/2022 2,861

Câu 4:

Tìm tất cả các giá trị của m để bất phương trình x2 – x + m ≤ 0 vô nghiệm?

Xem đáp án » 18/08/2022 1,715

Câu 5:

Cho bất phương trình x2 – (2m + 2)x + m2 + 2m < 0. Tìm m để bất phương trình nghiệm đúng với mọi x thuộc đoạn [0; 1]

Xem đáp án » 18/08/2022 1,653

Câu 6:

Xác định m để (m2 + 2)x2 – 2(m – 2)x + 2 > 0 với mọi x \( \in \)

Xem đáp án » 18/08/2022 1,344

Bình luận


Bình luận