Cho khối đa diện đều n mặt có thể tích V và diện tích mỗi mặt của nó bằng S. Khi đó, tổng các khoảng cách từ một điểm bất kỳ bên trong khối đa diện đó đến các mặt bên bằng
A.
B.
C.
D.
Quảng cáo
Trả lời:
Chọn C
Vì bài toán cho với đa diện đều n mặt và một điểm bất kỳ bên trong đa diện, nên ta chọn đa diện đều là hình lập phương cạnh a, và điểm bất kỳ là tâm I của nó. Khi đó, ta có:
Tổng khoảng cách từ I đến các mặt bên là (đvđd)
Thể tích (đvtt), diện tích mỗi mặt bên (đvdt)
Suy ra, tổng khoảng cách bằng .
Hot: 1000+ Đề thi giữa kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tổng ôn lớp 12 môn Toán, Lí, Hóa, Văn, Anh, Sinh Sử, Địa, KTPL (Form 2025) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Chọn B
Lời giải
Chọn C
Phương pháp:
Đa giác đều có n cạnh (với n chẵn) thì luôn tồn tại đường chéo là đường kính của đường tròn ngoại tiếp. Từ đó sử dụng kiến thức về tổ hợp để tính toán.
Cách giải:
Số hình vuông tạo thành từ các đỉnh của đa giác đều 20 cạnh là 20: 4 = 5 hình vuông (do hình vuông có 4 cạnh bằng nhau và 4 góc bằng nhau)
Vì đa giác đều có 20 đỉnh nên có 10 cặp đỉnh đối diện hay có 10 đường chéo đi qua tâm đường tròn ngoại tiếp.
Cứ mỗi 2 đường chéo đi qua tâm đường tròn ngoại tiếp tạo thành một hình chữ nhật nên số hình chữ nhật tạo thành là hình trong đó có cả những hình chữ nhật là hình vuông.
Số hình chữ nhật không phải hình vuông tạo thành là hình.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.