Câu hỏi:
11/07/2024 1,910Bảng sau ghi lại số sách mà các bạn học sinh tổ 1 và tổ 2 quyên góp được cho thư viện trường
a) Sử dụng số trung bình và trung vị, hãy so sánh số sách mà mỗi học sinh tổ 1 và tổ 2 quyên góp được cho thư viện trường.
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa... kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 70k).
Quảng cáo
Trả lời:
a) Mỗi tổ có 12 học sinh quyên góp, n = 12.
+) Tổ 1:
Sắp xếp mẫu số liệu theo thứ tự không giảm
1; 6; 6; 6; 6; 7; 7; 9; 9; 9; 9; 10
Trung bình số sách mà tổ 1 quyên góp là
Với n = 12 là số chẵn nên số trung vị của mẫu số liệu của tổ 1 là
Me = (7 + 7) : 2 = 7.
Khi đó tứ phân vị thứ hai là Q2 = 7.
Tứ phân vị thứ nhất là trung vị của nửa số liệu bên trái Q2, gồm Q2 vì n là số chẵn: 1; 6; 6; 6; 6; 7.
Vậy Q1 = (6 + 6) : 2 = 6.
Tứ phân vị thứ ba là trung vị của nửa số liệu bên phải Q2, gồm Q2 vì n là số chẵn: 7; 9; 9; 9; 9; 10.
Vậy Q3 = (9 + 9) : 2 = 9.
Khi đó khoảng tứ phân vị là ∆Q = Q3 − Q1 = 9 – 6 = 3.
+) Tổ 2:
Sắp xếp mẫu số liệu theo thứ tự không giảm
5; 6; 7; 7; 7; 8; 8; 9; 9; 9; 10; 30
Trung bình số sách mà tổ 2 quyên góp là
Với n = 12 là số chẵn nên số trung vị của mẫu số liệu của tổ 2 là
Me = (8 + 8) : 2 = 8.
Khi đó tứ phân vị thứ hai là Q2 = 8.
Tứ phân vị thứ nhất là trung vị của nửa số liệu bên trái Q2, gồm Q2 vì n là số chẵn: 5; 6; 7; 7; 7; 8.
Vậy Q1 = (7 + 7) : 2 = 7.
Tứ phân vị thứ ba là trung vị của nửa số liệu bên phải Q2, gồm Q2 vì n là số chẵn: 8; 9; 9; 9; 10; 30.
Vậy Q3 = (9 + 9) : 2 = 9.
Khi đó khoảng tứ phân vị là ∆Q = Q3 − Q1 = 9 – 7 = 2.
Vậy nếu so sánh theo số trung bình và trung vị thì số sách các bạn tổ 2 quyên góp được nhiều hơn các bạn tổ 1.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho số gần đúng a = 0,1571. Số quy tròn của a với độ chính xác d = 0,002 là:
A. 0,16;
B. 0,15;
C. 0,157;
D. 0,159.
Câu 2:
b) Hãy xác định giá trị ngoại lệ (nếu có) cho mỗi mẫu số liệu. So sánh số sách mà mỗi học sinh tổ 1 và tổ 2 quyên góp được cho thư viện trường sau khi bỏ đi các giá trị ngoại lệ.
Câu 3:
Trung vị của mẫu số liệu 4; 6; 7; 6; 5; 4; 5 là:
A. 4;
B. 5;
C. 6;
D. 7.
Câu 4:
Phương sai của dãy số liệu 4; 5; 0; 3; 3; 5; 6; 10 là:
A. 6,5;
B. 6,75;
C. 7;
D. 7,25.
Câu 5:
Tổng số giờ nắng trong các năm từ 2014 đến 2019 tại hai trạm quan trắc đặt tại Vũng Tàu và Cà Mau được ghi lại ở bảng sau:
a) Sử dụng số trung bình, hãy so sánh số giờ nắng mỗi năm của Vũng Tàu và Cà Mau trong 6 năm trên.
Câu 6:
Dãy số liệu 5; 6; 0; 3; 5; 10; 3; 4 có các giá trị ngoại lệ là:
A. 0;
B. 10;
C. 0; 10;
D. ∅.
13 câu Trắc nghiệm Tích của vectơ với một số có đáp án (Thông hiểu)
12 Bài tập Ứng dụng của hàm số bậc hai để giải bài toán thực tế (có lời giải)
185 câu Trắc nghiệm Toán 10 Bài 1:Phương trình đường thẳng trong mặt phẳng oxy có đáp án (Mới nhất)
10 Bài tập Ứng dụng ba đường conic vào các bài toán thực tế (có lời giải)
10 Bài tập Tính số trung bình, trung vị, tứ phân vị và mốt của mẫu số liệu cho trước (có lời giải)
10 Bài tập Cách xét tính đúng sai của mệnh đề (có lời giải)
10 Bài tập Viết phương trình cạnh, đường cao, trung tuyến, phân giác của tam giác (có lời giải)
23 câu Trắc nghiệm Toán 10 (có đáp án): Phương trình chứa căn
Hãy Đăng nhập hoặc Tạo tài khoản để gửi bình luận