Câu hỏi:
13/07/2024 809b) Hãy xác định giá trị ngoại lệ (nếu có) cho mỗi mẫu số liệu. So sánh số sách mà mỗi học sinh tổ 1 và tổ 2 quyên góp được cho thư viện trường sau khi bỏ đi các giá trị ngoại lệ.
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
b)
+) Tổ 1:
Giá trị ngoại lệ x thỏa mãn
x > Q3 + 1,5∆Q = 9 + 1,5.3 = 13,5
Hoặc x < Q1 − 1,5∆Q = 6 − 1,5.3 = 1,5
Vậy đối chiếu mẫu số liệu của tổ 1 suy ra giá trị ngoại lệ là 1.
+) Tổ 2:
Giá trị ngoại lệ x thỏa mãn
x > Q3 + 1,5∆Q = 9 + 1,5.2 = 12
Hoặc x < Q1 − 1,5∆Q = 7 − 1,5.2 = 4
Vậy đối chiếu mẫu số liệu của tổ 2 suy ra giá trị ngoại lệ là 30.
Sau khi bỏ đi các giá trị ngoại lệ này thì tổ 1 có:
Và số trung vị Me = 7 (Do n = 11 là số lẻ).
Tương tự thì tổ 2 có:
Và số trung vị Me = 8 (Do n = 11 là số lẻ).
Vậy sau khi bỏ các giá trị ngoại lệ thì khi so sánh theo số trung bình và trung vị các bạn tổ 2 vẫn quyên góp được nhiều sách hơn các bạn tổ 1.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Bảng sau ghi lại số sách mà các bạn học sinh tổ 1 và tổ 2 quyên góp được cho thư viện trường
a) Sử dụng số trung bình và trung vị, hãy so sánh số sách mà mỗi học sinh tổ 1 và tổ 2 quyên góp được cho thư viện trường.
Câu 2:
Tổng số giờ nắng trong các năm từ 2014 đến 2019 tại hai trạm quan trắc đặt tại Vũng Tàu và Cà Mau được ghi lại ở bảng sau:
a) Sử dụng số trung bình, hãy so sánh số giờ nắng mỗi năm của Vũng Tàu và Cà Mau trong 6 năm trên.
Câu 3:
Trung vị của mẫu số liệu 4; 6; 7; 6; 5; 4; 5 là:
A. 4;
B. 5;
C. 6;
D. 7.
Câu 4:
Dãy số liệu 5; 6; 0; 3; 5; 10; 3; 4 có các giá trị ngoại lệ là:
A. 0;
B. 10;
C. 0; 10;
D. ∅.
Câu 5:
Phương sai của dãy số liệu 4; 5; 0; 3; 3; 5; 6; 10 là:
A. 6,5;
B. 6,75;
C. 7;
D. 7,25.
Câu 6:
Cho số gần đúng a = 0,1571. Số quy tròn của a với độ chính xác d = 0,002 là:
A. 0,16;
B. 0,15;
C. 0,157;
D. 0,159.
về câu hỏi!