Câu hỏi:

23/08/2022 1,267

Một công ty kinh doanh thương mại chuẩn bị cho một đợt khuyến mại nhằm thu hút khách hàng bằng cách tiến hành quảng cáo sản phẩm của công ty trên hệ thống phát thanh và truyền hình. Chi phí cho 30 giây quảng cáo trên sóng phát thanh là 5 000 000 đồng, trên đài truyền hình là 15 000 000 đồng. Sóng phát thanh chỉ nhận phát các chương trình quảng cáo có thời lượng ít nhất là 30 giây và nhiều dài nhất 2 phút. Đài truyền hình chỉ nhận các chương trình quảng cáo có thời lượng ít nhất là 10 giây và nhiều nhất là 30 giây. Theo các phân tích, cùng thời lượng một phút quảng cáo, trên truyền hình sẽ có hiệu quả gấp 6 lần trên sóng phát thanh. Công ty dự định chi tối đa 20 000 000 đồng cho quảng cáo. Công ty cần đặt thời lượng quảng cáo trên sóng phát thanh và truyền hình như thế nào để hiệu quả nhất?

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Hướng dẫn giải

Đáp án đúng là: B

Chi phí cho 30 giây quảng cáo trên sóng phát thanh là 5 000 000 đồng, trên sóng truyền hình là 15 000 000 đồng nên chi phí cho 1 phút quảng cáo trên sóng phát thanh là 10 000 000 đồng, trên sóng truyền hình là 30 000 000 đồng.

Gọi thời lượng công ty đặt quảng cáo trên sóng phát thanh là x (phút), trên truyền hình là y (phút).

Chi phí cho quảng cáo trên sóng phát thanh là: 10 000 000x (đồng).

Chi phí cho quảng cáo trên truyền hình là: 30 000 000y (đồng).

Tổng chi phí cho việc quảng cáo là: 10 000 000x + 30 000 000y (đồng).

Do công ty dự định chi tối đa 20 000 000 đồng cho quảng cáo nên ta có:

10 000 000x + 30 000 000y ≤ 20 000 000

Hay x + 3y ≤ 2 Û x + 3y – 2 ≤ 0.

Đổi 10 giây = \(\frac{1}{6}\) phút, 30 giây = \(\frac{1}{2}\) phút.

Sóng phát thanh chỉ nhận phát các chương trình quảng cáo có thời lượng ít nhất là 30 giây và nhiều dài nhất 2 phút nên ta có:

\(\frac{1}{2}\) ≤ x ≤ 2 \[ \Leftrightarrow \left\{ \begin{array}{l}x \ge \frac{1}{2}\\x \le 2\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x - \frac{1}{2} \ge 0\\x - 2 \le 0\end{array} \right.\]

Đài truyền hình chỉ nhận các chương trình quảng cáo có thời lượng ít nhất là 10 giây và nhiều nhất là 30 giây nên ta có:

\(\frac{1}{6}\) ≤ y ≤ \(\frac{1}{2}\) \( \Leftrightarrow \left\{ \begin{array}{l}y \ge \frac{1}{6}\\y \le \frac{1}{2}\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}y - \frac{1}{6} \ge 0\\y - \frac{1}{2} \le 0\end{array} \right.\)

Hiệu quả chung của quảng cáo là: x + 6y.

Bài toán trở thành: Xác định x, y sao cho F(x; y) = x + 6y đạt giá trị lớn nhất với:

\[\left\{ \begin{array}{l}x - \frac{1}{2} \ge 0\\x - 2 \le 0\\y - \frac{1}{6} \ge 0\\y - \frac{1}{2} \le 0\\x + 3y - 2 \le 0\end{array} \right.\]

Biểu diễn miền nghiệm của hệ bất phương trình trên mặt phẳng Oxy:

• Miền nghiệm của bất phương trình x – \(\frac{1}{2}\) ≥ 0 là nửa mặt phẳng (kể cả bờ d1: x – \(\frac{1}{2}\) = 0) không chứa điểm O(0; 0).

• Miền nghiệm của bất phương trình x – 2 ≤ 0 là nửa mặt phẳng (kể cả bờ d2: x – 2 = 0) chứa điểm O(0; 0).

• Miền nghiệm của bất phương trình y – \(\frac{1}{6}\) ≥ 0 là nửa mặt phẳng (kể cả bờ d3: y – \(\frac{1}{6}\)= 0) không chứa điểm O(0; 0).

• Miền nghiệm của bất phương trình y – \(\frac{1}{2}\) ≤ 0 là nửa mặt phẳng (kể cả bờ d4: y – \(\frac{1}{2}\) = 0) chứa điểm O(0; 0).

• Miền nghiệm của bất phương trình x + 3y – 2 ≤ 0 là nửa mặt phẳng (kể cả bờ d5: x + 3y – 2 = 0) chứa điểm O(0; 0).

Miền không gạch chéo (kể cả bờ d1, d2, d3, d4 và d5) là giao của các miền nghiệm và cũng là phần biểu diễn miền nghiệm của hệ bất phương trình đã cho.

Media VietJack

Miền nghiệm của hệ bất phương trình là miền tam giác ABC với A\(\left( {\frac{1}{2};\frac{1}{6}} \right),\) B\(\left( {\frac{3}{2};\frac{1}{6}} \right)\) và C\(\left( {\frac{1}{2};\frac{1}{2}} \right).\)

Xét F(x; y) = x + 6y ta có:

Tại A\(\left( {\frac{1}{2};\frac{1}{6}} \right):\) F = \(\frac{1}{2} + 6.\frac{1}{6} = 1,5;\)

Tại B\(\left( {\frac{3}{2};\frac{1}{6}} \right):\) F = \(\frac{3}{2} + 6.\frac{1}{6} = 2,5;\)

Tại C\(\left( {\frac{1}{2};\frac{1}{2}} \right):\) F = \(\frac{1}{2} + 6.\frac{1}{2} = 3,5.\)

Khi đó F(x; y) đạt giá trị lớn nhất bằng 3,5 tại C\(\left( {\frac{1}{2};\frac{1}{2}} \right).\)

Tức là công ty đó cần đặt thời lượng trên đài phát thanh \(\frac{1}{2}\) phút = 30 giây và trên đài truyền hình \(\frac{1}{2}\) phút = 30 giây để đạt hiệu quả nhất.

Vậy ta chọn phương án B.

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

Với giá trị nào của m thì điểm A(1 − m; m) không thuộc miền nghiệm của bất phương trình 2x − 3(y − x) > 4.

Lời giải

Hướng dẫn giải

Đáp án đúng là: B

Ta có: 2x − 3(y − x) > 4 2x – 3y + 3x – 4 > 0 5x – 3y – 4 > 0.

Do điểm A(1 − m; m) không thuộc miền nghiệm của bất phương trình nên thay tọa độ điểm A vào bất phương trình trên không thoả mãn hay điểm A thuộc miền nghiệm của bất phương trình 5x – 3y – 4 ≤ 0.

Khi đó ta có: 5(1 – m) – 3m – 4 ≤ 0

5 – 5m – 3m – 4 ≥ 0

–8m ≥ –1

m ≤ \(\frac{1}{8}\)

Ta chọn phương án B.

Lời giải

Hướng dẫn giải

Đáp án đúng là: B

Trên mặt phẳng Oxy:

• Biểu diễn miền nghiệm của bất phương trình: x ≥ 0.

Miền nghiệm của bất phương trình x ≥ 0 là nửa mặt phẳng (kể cả đường thẳng d1: x = 0) chứa điểm (1; 0).

• Biểu diễn miền nghiệm của bất phương trình: x – y – 1 ≤ 0.

Vẽ đường thẳng d2: x – y – 1 = 0 đi qua hai điểm (0; –1) và (1; 0).

Xét điểm O(0; 0) d2, ta có: 0 – 0 – 1 = –1 < 0 nên miền nghiệm của bất phương trình x – y – 1 ≥ 0 là nửa mặt phẳng (kể cả bờ d2) chứa điểm O(0; 0).

• Biểu diễn miền nghiệm của bất phương trình: x + 2y – 10 ≤ 0.

Vẽ đường thẳng d3: x + 2y – 10 = 0 đi qua hai điểm (0; 5) và (10; 0).

Xét điểm O(0; 0) d1, ta có: 0 + 2.0 – 10 = –10 < 0 nên miền nghiệm của bất phương trình x + 2y – 10 ≤ 0 là nửa mặt phẳng (kể cả bờ d3) chứa điểm O(0; 0).

Miền không gạch chéo (kể cả bờ d1, d2, d3) là giao của các miền nghiệm và cũng là phần biểu diễn miền nghiệm của hệ bất phương trình đã cho.

Media VietJack

Miền nghiệm của hệ bất phương trình là miền tam giác ABC với A(–1; 0), B(4; 3) và C(0; 5).

Gọi BH là đường cao kẻ từ B đến AC.

Khi đó BH = |xB| = 4.

CA = CO + OA = |yC| + |yA| = 5 + 1 = 6.

Diện tích của tam giác ABC là:

S = \(\frac{1}{2}\) BH.CA = \(\frac{1}{2}\) .4.6 = 12 (đơn vị diện tích).

Vậy ta chọn phương án B.

Câu 4

Tất cả các giá trị thực của tham số m để bất phương trình 3x + my − 7 ≥ 0 có miền nghiệm chứa điểm A(\(\sqrt 2 \); 1) là:

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay