Câu hỏi:

24/08/2022 2,662

c) Gọi E là điểm tùy ý trên cạnh AB, đường thẳng qua H và vuông góc với HE cắt cạnh AC tại F. Chứng minh AE.CH = AH.FC.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

c) Xét DEHA và DFHC, ta có:

+) EHA^+AHF^=EHF^=90°  (1)

+) FHC^+AHF^=AHC^=90°(2)

Từ (1) và (2) nên suy ra EHA^=HFC^=90°AHF^  (5)

Lại có:

+) EAH^+HAF^=EAF^=90°  (3)

+) HCF^+HAF^=180°90°=90°  (4)

Từ (3) và (4) nên suy ra EAH^=HCF^=90°HAF^  (6)

Từ (5) và (6) nên suy ra ∆EHA ∆FHC (g.g)

AECF=HAHCAE.CH=AH.FC(đpcm).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Hướng dẫn giải

Gọi x (km) là độ dài quãng đường AB.

Thời gian ô tô đi từ A đến B với vận tốc 50 km/h là x50  (h)

Ô tô đi từ B về A với vận tốc lớn hơn lúc đi 10 km/h tức là 60 km/h với số thời gian là x60(h)

Đổi 24 phút = 25  giờ.

Do thời gian về ít hơn thời gian đi là 24 phút nên ta có phương trình:

x50x60=25

6x3005x300=25

x300=25

x=300.25=120 (thỏa mãn)

Vậy quãng đường AB dài 200 km.

Lời giải

d) Ta có:

+) ∆EHA ∆FHC (cmt)

EHFH=HAHC

+) ∆HAC ∆ABC (cmt)

ABAC=HAHC

Suy ra EHFH=ABAC=HAHC

HEAB=HFAC

+) Xét DEHF và DBAC có:

HEAB=HFACcmt     EHF^=BAC^=90°ΔEHFΔBACc.g.c

Khi đó tỉ lệ diện tích của hai tam giác DEHF và DBAC cũng bằng bình phương tỉ lệ của hai cạnh HE và AB

SEHFSBAC=HEAB2SEHF=SBAC.HEAB2

Vì SABC và AB không đổi nên SEHF nhỏ nhất khi HE nhỏ nhất

Do đó EH ^ AB.

Vậy SEHF nhỏ nhất khi E là hình chiếu của H trên AB.

Câu 3

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP