Câu hỏi:

13/07/2024 8,169

c) Đường thẳng qua B và song song với EF cắt AC tại M. Gọi I là trung điểm của BM, D là giao điểm của EI và BC. Chứng minh: A, H, D thẳng hàng.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

c) +) Xét ∆ABC có hai đường cao BE, CF và cắt nhau tại H nên suy ra H là trực tâm của tam giác ABC

Suy ra AH ^ BC (1)

+) Xét tam giác BEM vuông tại E có I là trung điểm của BM nên suy ra

IE=BI=IM=BM2

+) Xét tam giác IEM có IE = IM (cmt) nên tam giác IEM tại I.

Suy ra IEM^=IME^(2)

+) Xét tam giác ABC có FE // BC suy ra AEF^=AMB^  (đồng vị) (3)

+) Ta có AF.AB = AE.AC

AFAC=AEAB

+) Xét hai tam giác AEF và ABC có:

EAF^=BAC^A^chungAFAC=AEABcmt          ΔAEFΔABCc.g.c

AEF^=ABC^ (hai góc tương ứng) (4)

Từ (2), (3), (4) suy ra CED^=ABC^ .

+) Xét hai tam giác CED và CBA có:

ECD^=BCA^C^chungCED^=ABC^cmt       ΔCEDΔCBAg.g

CECB=CDCACECD=CBCA

+) Xét hai tam giác CEB và CDA có:

CECD=CBCAcmt          ECB^=DCA^C^chungΔCEBΔCDAc.g.c

Suy ra CDA^=CEB^  (hai góc tương ứng)

Nên CDA^=90°

Do đó  ADBC(5)

Từ (1) và (5) nên suy ra A, H, D thẳng hàng (đpcm).

 

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Hướng dẫn giải

Cho ∆ABC nhọn (AB < AC) có đường cao BE, CF cắt nhau tại H. a) Chứng minh: ∆FHB và ∆EHC đồng dạng. (ảnh 1)

a) Xét tam giác ∆FHB và ∆EHC có:

FHB^=EHC^           HFB^=HEC^=90°ΔFHBΔEHCg.g

Lời giải

Hướng dẫn giải

Chiều cao của mực nước ở trong bể là:

1,2 - 0,4 = 0,8 (m)

Thể tích nước trong bể cá với chiều dài 2 m, chiều rộng 1,5 m và chiều cao 0,8 m là

2 . 1,5 . 0,8 = 2,4 (m3).

Vậy thể tích nước trong bể cá là 2,4 m3.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP