Câu hỏi:

19/08/2025 6,483 Lưu

 Xác định vị trí điểm M thuộc cạnh AC để diện tích tam giác BIC đạt giá trị lớn nhất.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Áp dụng bất đẳng thức Cô-si vào hai cnh IB và IC ta thấy:

IB2 + IC2 ³ 2IB.IC

IB.ICIB2+IC22

Mà áp dụng định lý Py-ta-go vào tam giác BIC vuông tại I nên

BC2 = IB2 + IC2

Thay vào (1) ta suy ra được:

SBIC12.IB2+IC22=BC24=104=52  (cm2)

Dấu “=” xảy ra khi và chỉ khi IB = IC.

Suy ra DIBC cân tại I nên tam giác IBC vuông cân tại I

MBC^=45°

Vậy khi điểm M thuộc AC sao cho MBC^=45°  thì diện tích tam giác BIC đạt giá trị lớn nhất.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Hướng dẫn giải

Cho tam giác ABC vuông tại A, đường cao AH, biết AB = 6 cm; AC = 8 cm. 1. Chứng minh: ΔABC đồng dạng ΔHBA. Tính HB; AH. (ảnh 1)

1. Áp dụng định lý Py-ta-go vào tam giác ABC vuông tại A có:

BC=AB2+AC2=62+82=10  (cm)

Xét hai tam giác ABC và HBA có

AHB^=CAB^=90°    HBA^=ABC^B^chungΔABCΔHBAg.g

HBAB=BABCHB=AB2BC=6210=3,6  (cm)

Áp dụng định lý Pytago vào tam giác ABH vuông tại H có

AH=AB2BH2=623,62=4,8  (cm)

Vậy HB = 3,6 cm; AH = 4,8 cm.

Lời giải

b) ĐKXĐ:x0    x+10x0  x1

Khi đó phương trình đã cho tương đương với:

x+3xxx+13x2+4x+1xx+1=x1x+1xx+1

x2+3xxx+13x2+4x+1xx+1=x21xx+1

x2+3x3x24x1xx+1=x21xx+1

2x2x1xx+1=x21xx+1

Þ -2x2 - x - 1 = x2 - 1

Û 3x2 + x = 0

Û x(3x + 1) = 0

x=0      3x+1=0x=0  (L)x=13  (TMÐK)

Vậy nghiệm của phương trình là x=13.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP