Giải bài toán bằng cách lập phương trình hoặc hệ phương trình.
Một người đi xe đạp từ A đến B cách nhau 36 km. Khi đi từ B trở về A, người đó tăng vận tốc thêm 3 km/h. Vì vậy thời gian về ít hơn thời gian đi là 36 phút. Tính vận tốc của người đi xe đạp khi đi từ A đến B.
Giải bài toán bằng cách lập phương trình hoặc hệ phương trình.
Một người đi xe đạp từ A đến B cách nhau 36 km. Khi đi từ B trở về A, người đó tăng vận tốc thêm 3 km/h. Vì vậy thời gian về ít hơn thời gian đi là 36 phút. Tính vận tốc của người đi xe đạp khi đi từ A đến B.
Câu hỏi trong đề: Đề thi Học kì 2 Toán 9 chọn lọc, có đáp án !!
Quảng cáo
Trả lời:
Gọi x (km/h) là vận tốc của người đi xe đạp khi đi từ A đến B (x > 0).
Thời gian của người đi xe đạp khi đi từ A đến B là (giờ)
Vận tốc của người đi xe đạp khi đi từ B đến A là x + 3 (km/h)
Thời gian của người đi xe đạp khi đi từ B đến A là (giờ)
Vì thời gian về ít hơn thời gian đi là 36 phút =
giờ nên ta có phương trình:
Û 180(x + 3) – 180x = 3x(x + 3)
Û 180x + 540 – 180x = 3x2 + 9x
Û 3x2 + 9x – 540 = 0
Û x2 + 3x – 180 = 0 (a = 1, b = 3, c = −180)
Ta có: ∆ = b2 – 4ac = 32 – 4.1.(−180) = 729 > 0
Phương trình có 2 nghiệm phân biệt:
x1 = = 12 (nhận)
x2 = = −15 (loại)
Vậy vận tốc của người đi xe đạp khi đi từ A đến B là 12 km/h.
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải

1) Vì MA là tiếp tuyến của (O) nên MA ^ OA.
Suy ra = 90°.
Tương tự = 90° nên = 180°.
Do đó tứ giác MAOB nội tiếp đường tròn đường kính OM.
Do IB là tiếp tuyến của (O) ta có hay
Xét ∆IBA và ∆IFB có:
là góc chung
(cmt)
Do đó ∆IBA
∆IFB (g.g)
Suy ra (các cạnh tương ứng)
Do đó IB2 = IF.IA (đpcm) (1)
2) Vì AE // MB (gt) nên (hai góc so le trong) hay (2)
Do MA là tiếp tuyến của (O) ta có hay (3)
Từ (2) và (3) suy ra .
Xét ∆IMF và ∆IAM có:
là góc chung
(cmt)
Do đó ∆IMF ∆IAM (g.g)
Suy ra (các cạnh tương ứng)
Do đó IM2 = IF.IA (4)
Từ (1) và (4) suy ra IB2 = IM2 Þ IB = IM (đpcm)
Vậy IB = IM.
Lời giải
1) x2 – 2x 1 = 0 (với a = 1, b’ =
= −1, c = −1)
Ta có: ∆’ = b’2 – ac = (−1)2 + 1 = 2
Phương trình có hai nghiệm phân biệt:
x1 = = 1 + ; x2 = = 1 − .
Vậy phương trình có hai nghiệm x1 = 1 + ; x2 = 1 − .
2) A =
=
=
=
= =
= .
Vậy A = với x ≥ 0; x ≠ 4.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.