Câu hỏi:

04/09/2022 1,130

Trong một biểu kỉ niệm ngày thành lập trường, bí thư Đoàn trường cần chọn 4 tiết mục từ 6 tiết mục mục hát và 4 tiết mục từ 5 tiết mục múa rồi xếp thứ tự biểu diễn. Hỏi có bao nhiêu cách chọn và xếp thứ tự sao cho các tiết mục hát và múa xen kẽ nhau?

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Hướng dẫn giải

Đáp án đúng là: C

Giả sử các tiết mục được biểu diễn đánh số thứ tự từ 1 đến 8. Vì số lượng tiết mục hát và múa bằng nhau nên có hai trường hợp:

Trường hợp 1: Tiết mục hát diễn ra đầu tiên

Khi đó, các tiết mục hát có số thứ tự là số lẻ, còn các tiết mục múa có số thứ tự là số chẵn. Như vậy, thứ tự của các tiết mục múa và hát được cố định, chỉ thay đổi thứ tự giữa các tiết mục múa, hoặc giữa các tiết mục hát.

Chọn 4 tiết mục hát từ 6 tiết mục hát và xếp thứ tự có:

\(A_6^4 = 360\) (cách)

Chọn 4 tiết mục múa từ 5 tiết mục múa và xếp thứ tự có:

\(A_5^4 = 120\) (cách)

Khi đó, số cách chọn và xếp thứ tự các tiết mục văn nghệ trong trường hợp tiết mục hát diễn ra đầu tiên là:

360.120 = 43 200

Trường hợp 2: Tiết mục múa diễn ra đầu tiên

Tương tự, số cách chọn và xếp thứ tự các tiết mục văn nghệ trong trường hợp tiết mục múa diễn ra đầu tiên là:

120.360 = 43 200

Vậy số cách chọn và xếp thứ tự các tiết mục văn nghệ sao cho các tiết mục hát và múa xen kẽ nhau là:

43 200 + 43 200 = 86 400.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Hướng dẫn giải

Đáp án đúng là: D

Gọi số vận động viên nam là n.

Số ván các vận động viên nam chơi với nhau là \(2.C_n^2 = n\left( {n - 1} \right)\).

Số ván các vận động viên nam chơi với các vận động viên nữ là \(2.2.n = 4n\)

Vậy ta có n(n – 1) – 4n = 84

\( \Leftrightarrow \) n2 – 5n – 84 = 0

\( \Leftrightarrow \)n = 12 hoặc n = – 7.

Kết hợp với điều kiện n = 12 thoả mãn

Vậy số ván các vận động viên chơi là \(2C_{14}^2 = 182\).

Lời giải

Hướng dẫn giải

Đáp án đúng là: C

Gọi số có ba chữ số cần tìm là \(\overline {abcd} \), với a ≠ 0

a có 6 cách chọn (vì a ≠ 0 nên a có thể chọn một trong 6 số 1; 2; 3; 4; 5; 6)

b có 7 cách chọn (vì b có thể chọn tuỳ ý một trong 7 số 0; 1; 2; 3; 4; 5; 6)

c có 7 cách chọn (vì c có thể chọn tuỳ ý một trong 7 số 0; 1; 2; 3; 4; 5; 6)

d có 4 cách chọn (vì \(\overline {abcd} \) là số chẵn nên d phải là số chẵn vậy d chỉ được chọn một trong 4 số 0; 2; 4; 6)

Vậy số các số cần tìm là 6.7.7.4 = 1176 (số).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP