Câu hỏi:

05/09/2022 1,559 Lưu

Một trường THPT có 10 lớp 12, mỗi lớp cử 3 bạn học sinh tham gia thi vẽ tranh cổ động. Các lớp tiến hành bắt tay giao lưu với nhau( các học sinh cùng lớp không bắt tay với nhau). Tính số lần bắt tay của các học sinh với nhau, biết rằng hai học sinh khác nhau ở hai lớp khác nhau chỉ bắt tay đúng 1 lần.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Hướng dẫn giải

Đáp án đúng là: A

Mỗi lớp cử ra 3 học sinh nên sẽ có 3.10 = 30 học sinh tham gia vẽ tranh cổ động

Cứ mỗi 2 bạn sẽ thực hiện bắt tay với nhau: có \(C_{30}^2\)lần bắt tay (bao gồm cả các bạn cùng lớp bắt tay nhau)

Mặt khác cứ mỗi 2 bạn cùng 1 lớp bắt tay nhau ta có : \(C_3^2\) lần bắt tay

Do đó số lần bắt tay của các học sinh cùng lớp của cả khối là : 10. \(C_3^2\)

Vậy số lần bắt tay của các học sinh với nhau theo yêu cầu là: \(C_{30}^2\)- 10. \(C_3^2\)= 405

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Hướng dẫn giải

Đáp án đúng là: D

Ta có : Mỗi lần chọn 1 số bất kì từ 6 số đã cho, ta được một tổ hợp chập 1 của 6 nên n(Ω) = \(C_6^1\)= 6

Gọi B là biến cố :”Số lấy ra là số nguyên tố”

Ta có: B = {2} n(B) = 1

Vậy P(B) = \(\frac{{n(B)}}{{n(\Omega )}}\)=\(\frac{1}{6}\)

Lời giải

Hướng dẫn giải

Đáp án đúng là: A

 Gọi \(\overline {abc} \)là số có ba chữ số cần tìm

Số phần tử của không gian mẫu là : n(S) = 9.9.8 = 648

Gọi M là biến cố :” số tự nhiên có 3 chữ số phân biệt lớn hơn 250”

- Trường hợp 1: a > 2

Chọn a {3; 4; 5; 6; 7; 8; 9}: có 7 cách chọn

Chọn b có 9 cách chọn

Chọn c có 8 cách chọn

Trường hợp 1 có: 7.9.8 = 504 ( số)

- Trường hợp 2: a = 2; b > 5

Chọn a có 1 cách chọn

Chọn b {6; 7; 8; 9}: có 4 cách chọn

Chọn c có 8 cách chọn

Trường hợp 2 có: 1.4.8 = 32 ( số)

- Trường hợp 3: a = 2; b = 5; c ≠ 0

Chọn a có 1 cách chọn

Chọn b có 1 cách chọn

Chọn c có 7 cách chọn

Trường hợp 3 có: 1.1.7 = 7 ( số)

Do đó, áp dụng quy tắc cộng ta có: n(M) = 504 + 32 + 7 = 543

Vậy P(M) = \(\frac{{n(M)}}{{n(\Omega )}}\)=\(\frac{{543}}{{648}}\)=\(\frac{{181}}{{216}}\)

Câu 4

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP