Câu hỏi:
13/07/2024 14,635Cho tam giác nhọn ABC có hai đường cao BE và CF cắt nhau tại điểm H.
1) Chứng minh tứ giác AEHF nội tiếp đường tròn.
2) Chứng minh .
3) Gọi D là giao điểm của hai đường thẳng AH và BC. Chứng minh H là tâm của đường tròn nội tiếp tam giác DEF.
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
1) Xét tứ giác AEHF, có mà hai góc ở vị trí đối nhau.
Vậy tứ giác AEHF nội tiếp
2) Xét tứ giác BFEC, có: mà hai góc cùng nhìn cạnh BC.
Suy ra tứ giác BFEC nội tiếp.
Do đó .
Vậy .
3) Tam giác ABC có BE ^ AC; CF ^ AB, BE và CF cắt nhau tại H.
Suy ra H là trực tâm tam giác ABC nên AH ^ BC tại D.
Khi đó
Do đó tứ giác BFHD và CEHD nội tiếp.
+ Tứ giác AEHF nội tiếp Þ Þ
Tứ giác CDHE nội tiếp Þ Þ
Mà (cùng phụ )
Þ Þ EH là phân giác góc DEF.
+ Tứ giác AEHF nội tiếp Þ Þ
Tứ giác BFHD nội tiếp Þ Þ
Mà (cùng phụ )
Þ
Þ FH là phân giác góc DFE
Mà FH và EH cắt nhau tại H
Þ H là tâm đường tròn nội tiếp tam giác DEF.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho hàm số y = 2x2 có đồ thị là (P).
1) Xét tính đồng biến, nghịch biến của hàm số đã cho và vẽ đồ thị (P) trên mặt phẳng tọa độ Oxy.
2) Tìm tọa độ của điểm M thuộc đồ thị (P) biết M có hoành độ bằng 3.
Câu 2:
1) Cho phương trình x2 – 6x + m = 0 (với m là tham số).
Tìm m để phương trình đã cho có nghiệm kép và tìm nghiệm kép đó.
2) Cho x1 và x2 là hai nghiệm của phương trình x2 – 3x – 2 = 0.
Tính giá trị của biểu thức P = x12 + x22.
Câu 3:
1) Tính diện tích toàn phần của hình trụ có chiều cao bằng 3 dm và bán kính đáy bằng 2 dm (học sinh không cần vẽ hình khi giải câu này).
2) Bác Thành có một khu vườn hình chữ nhật biết chiều dài hơn chiều rộng 10m và diện tích bằng 1200 m2; bác Thành xây bức tường bao quanh khu vườn, xây theo chu vi của khu vườn, với giá thành được tính mỗi mét của bức tường đo theo chu vi của khu vườn (bên ngoài) có giá là 700 nghìn đồng, không kể phần cổng của khu vườn dài 3 mét. Tính số tiền bác Thành dùng để xây bức tường nói trên.
Câu 4:
1) Giải hệ phương trình .
2) Giải phương trình x2 + x – 6 = 0.
3) Giải phương trình x4 – x2 – 12 = 0.
về câu hỏi!