Câu hỏi:
09/09/2022 2,957Cho mệnh đề chứa biến P(x) = {x ∈ ℤ : |x2 – 2x – 3| = x2 + |2x + 3|}. Trong đoạn [-2020; 2021] có bao nhiêu giá trị của x để mệnh đề chứa biến P(x) là mệnh đề đúng?
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Hướng dẫn giải
Đáp án đúng là: A
Số giá trị nguyên để mệnh đề P(x) là mệnh đề đúng chính là số nghiệm nguyên của phương trình |x2 – 2x – 3| = x2 + |2x + 3| (1).
+ Nếu x ≥ thì ta có:
(1) ⟺ |x2 – 2x – 3| = x2 + |2x + 3| ⇔ .Mà x ∈ ℤ và x ∈ [-2020; 2021] nên x = 0 thỏa mãn.
+ Nếu x < thì ta có (1) ⟺ |x2 – 2x – 3| = x2 – 2x – 3. Sử dụng định nghĩa giá trị tuyệt đối, kết hợp với điều kiện, ta có nghiệm của (1) trong trường hợp này:
(1) ⇔
Mà x ∈ [-2020;2021] nên x ∈ {-2; -3; …; -2020}.
Do đó tập nghiệm của phương trình là S = {0; -2; -3; …; -2020}.
Vậy có 2020 số nguyên thỏa mãn yêu cầu bài toán.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho A = {x ∈ ℝ | |x – m| ≤ 25}; B = {x ∈ ℝ | |x| ≥ 2020}.
Có bao nhiêu giá trị nguyên m thỏa mãn A ∩ B = ∅.
Câu 2:
Câu 3:
Cho hai tập hợp P = [3m – 6; 4] và Q = (-2; m + 1), m ∈ ℝ. Tìm m để
P\Q = ∅.
về câu hỏi!