Câu hỏi:

12/09/2022 1,376

Hai chiếc tàu thủy cùng xuất phát từ vị trí A, đi thẳng theo hai hướng tạo với nhau một góc 60°. Tàu tới B chạy với tốc độ 20 hải lí một giờ. Tàu tới C chạy với tốc độ 15 hải lí một giờ. Hỏi sau hai giờ hai tàu cách nhau bao nhiêu hải lí? ( Chọn kết quả gần nhất ).

Hai chiếc tàu thủy cùng xuất phát từ vị trí A, đi thẳng theo hai hướng tạo với nhau một góc 60 độ (ảnh 1)

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Hướng dẫn giải

Đáp án đúng là: B

Sau 2h, tàu tới C đi được đoạn đường b = 15.2 = 30 ( hải lí )

Sau 2h, tàu tới B đi được đoạn đường c = 15.2 = 40 ( hải lí )

Dựa vào hình vẽ, sau 2h, tàu B và tàu C tạo với điểm xuất phát một tam giác ABC có

 A^= 60°, b = 30, c = 40 và a = BC.

Áp dụng định lí côsin ta có:

a2 = b2 + c2 – 2bccosA

a2 = 302 + 402 – 2.30.40.cos60°

a2 = 1300

a ≈ 36 ( hải lí ).

Vậy đáp án đúng là B.

 

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Hướng dẫn giải

Đáp án đúng là: B

Gọi điểm H là chân tòa nhà. Điểm D là điểm tương ứng trên tòa nhà ngang bằng với vị trí quan sát A. Như vậy ADC^  = 90°.

Từ vị trí quan sát A cao 7m so với mặt đất có thể quan sát được đỉnh B và chân C của cột ăng – ten dưới góc 50° và 40° so với phường nằm ngang. Như vậy DAC^ = 40° và DAB^ = 50°.

Xét tam giác ABD có: ABD^  = 180 – ADB^  DAB^  = 180° – 90° – 50° = 40° = ABC^

Xét tam giác ABC có:

 BAC^= 50° – 40° = 10°.

Áp dụng định lí sin cho tam giác ABC:

 BCsinA=ACsinB5sin10°=ACsin40°  AC ≈ 18,5m

Áp dụng định lí sin cho tam giác ADC:

 CDsinA=ACsinDCDsin40°=18,5sin90°  CD ≈ 11,9m

Chiều cao tòa nhà tương ứng với đoạn CH.

CH = CD + DH = 11,9 + 7 = 18,9 ≈ 19m.

Vậy đáp án đúng là B.

Lời giải

Hướng dẫn giải

Đáp án đúng là: A

3cosα – sinα = 1

3cosα = 1 + sinα

9cos2α = (sinα + 1)2  = sin2α + 2.sin α +1

9 – 9sin2 α = sin2α + 2.sin α +1

10 sin2α + 2.sinα – 8 = 0

sinα = – 1 hoặc sinα =  45

Với sinα = – 1 không thỏa mãn

Với sinα = 45  cosα = 35.

Vậy tanα =43 

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay