Câu hỏi:

12/07/2024 26,314

Cho đường tròn (O) có đường kính AB và điểm C thuộc đường tròn đó (C khác A, B). Lấy điểm D thuộc dây BC (D khác B, C). Tia AD cắt cung nhỏ BC tại điểm E, tia AC cắt tia BE tại điểm F.

a) Chứng minh rằng: Tứ giác FCDE là tứ giác nội tiếp đường tròn.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack
Cho đường tròn (O) có đường kính AB và điểm C thuộc đường tròn đó (C khác A, B). (ảnh 1)

a) Ta có hai góc ACB^=AEB^=900 (hai góc nội tiếp chắn nửa đường tròn).

Xét tứ giác FCDE  FCD^=FED^=900FCD^+FED^=1800

Suy ra tứ giác FCDE nội tiếp đường tròn đường kính DF.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

a) Xét các tam giác AHC và BHC vuông tại H, ta có :

tanA=CHAHAH=CHtanAtanB=CHBHBH=CHtanB

Suy ra: AB=AH+BH=CHtanA+CHtanB=CH.1tanA+1tanB=CH.tanA+tanBtanA.tanB.

CH=AB.tanA.tanBtanA+tanB=762.tan6°.tan4°tan6°+tan4°32m

Lời giải

Cho đường tròn tâm O, đường kính AB. Trên tiếp tuyến của đường tròn (O) tại A lấy điểm M (ảnh 1)

a) Ta có: AKN^=90° (góc nội tiếp chắn nửa đường tròn);

               AHN^=90° (CHAB).

Xét tứ giác AKNH có: AKN^+AHN^=180° ;

                                                AKN^ AHN^ ở vị trí đối nhau.

Vậy tứ giác AKNH nội tiếp trong một đường tròn.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP