Câu hỏi:

24/09/2022 1,109 Lưu

Cho hình chữ nhật ABCD tâm O. Gọi M, N lần lượt là trung điểm của các cạnh AB, AD. Chọn khẳng định đúng trong các khẳng định sau:

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án đúng là: B

Cho hình chữ nhật ABCD tâm O. Gọi M, N lần lượt là trung điểm của các cạnh AB, AD. Chọn khẳng định đúng trong các khẳng định sau: (ảnh 1)

+) Ta có M là trung điểm của AB nên ta có: AM=-BM. Do đó D sai.

+) Ta lại có ABCD là hình chữ nhật nên AB // CD, AB = CD và hai vectơ AB, DCcùng hướng nên AB=DC. Do đó A sai.

+) Xét tam giác ABD, có:

M là trung điểm của AB

O là trung điểm của BD

MO là đường trung bình của tam giác ABD

MO = 12AD

Mà AN = ND = 12AD nên MO = AN.

Ta thấy MO AN cùng hướng nên MO=AN. Do đó B đúng.

Hai vectơ OC OD không cùng phương nên không thể bằng nhau. Do đó C sai.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

+) Xét bất phương trình x – y – 2

Vẽ đường thẳng d1: x – y = – 2 ;

Lấy điểm O(0; 0) d1 có 0 – 0 = 0 > – 2. Do đó O(0; 0) thuộc vào miền nghiệm của bất phương trình.

Do đó miền nghiệm D1 là nửa mặt phẳng có bờ là đường thẳng d1 chứa điểm O và kể cả đường thẳng d1.

+) Xét bất phương trình x + y ≤ 4

Vẽ đường thẳng d2: x + y = 4;

Lấy điểm O(0; 0) d2 có 0 + 0 = 0 < 4. Do đó O(0; 0) thuộc vào miền nghiệm của bất phương trình.

Do đó miền nghiệm D2 là nửa mặt phẳng có bờ là đường thẳng d2 chứa điểm O và kể cả đường thẳng d2.

+) Xét bất phương trình x – 5y ≤ – 2

Vẽ đường thẳng d3: x – 5y = – 2;

Lấy điểm O(0; 0) d3 có 0 – 5.0 = 0 > – 2. Do đó O(0; 0) không thuộc vào miền nghiệm của bất phương trình.

Do đó miền nghiệm D3 là nửa mặt phẳng có bờ là đường thẳng d3 không chứa điểm O và kể cả đường thẳng d3.

Vậy miền nghiệm của hệ bất phương trình là giao của ba miền nghiệm D1, D2 và D3 là miền trong của tam giác ABC có A(1; 3), B(3; 1), C(– 2; 0).

Tìm giá trị nhỏ nhất của biểu thức F(x; y) = – 2x + y trên miền nghiệm của hệ bất phương trình . (ảnh 1)

Giá trị nhỏ nhất của biểu thức F(x; y) đạt được trên các đỉnh của tam giác ABC.

Ta có:

Tại điểm A(1; 3) ta có: F(x; y) = – 2.1 + 3 = 1.

Tại điểm B(3; 1) ta có: F(x; y) = – 2.3 + 1 = – 5.

Tại điểm C(– 2; 0) ta có: F(x; y) = – 2.(– 2) + 0 = 4.

Vậy giá trị nhỏ nhất của F(x; y) = – 5.

Câu 2

Lời giải

Đáp án đúng là: B

Ta có mệnh đề phủ định của mệnh đề “Phương trình ax2 + bx + c = 0 (a ≠ 0) vô nghiệm” là: Phương trình ax2 + bx + c = 0 (a ≠ 0) có nghiệm.

Câu 3

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP