Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Nhận thấy \({x^2} + 7 = x\left( {x + 1} \right) - \left( {x + 1} \right) + 8.\)

Do \(x\left( {x + 1} \right) \vdots \left( {x + 1} \right),\) nên \({x^2} + 7 \vdots \left( {x + 1} \right)\) khi và chỉ khi \(8 \vdots \left( {x + 1} \right).\)

Suy ra \(x + 1 \in \left\{ { - 8; - 4; - 2; - 1;\,\,1;\,\,2;\,\,4;\,\,8} \right\}.\)

Vậy \(x \in \left\{ { - 9;\,\, - 5;\,\, - 3;\,\, - 2;\,\,0;\,\,1;\,\,3;\,\,7} \right\}.\)

C

Chu Tuấn Hải

ĐÉO HIỂU ĐƯỢC GÌ CẢ

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Ta có: 2x  5 = 2(x  1)  3

Do đó để (2x  5)  (x  1) thì 3  (x  1), hay (x  1)  Ư(3) = {−3; −1; 1; 3}.

Ta có bảng giá trị:

x ‒ 1

‒3

‒1

1

3

x

‒2

0

2

4

Vậy các giá trị của x là: ‒2; 0; 2; 4.

Lời giải

Nhận thấy: \[a = {111.10^{17}} + {111.10^{14}} + {111.10^{11}} + {111.10^8} + {111.10^5} + {111.10^2} + 11\]

                      =\[111.({10^{17}} + {10^{14}} + {10^{11}} + {10^8} + {10^5} + {10^2}) + 11\]

Suy ra \(a\) là tổng của hai số hạng trong đó có 1 số chia hết cho 111, 1 số không chia hết cho 111 nên \(a\) không chia hết cho 111.

Vậy \(a\) không chia hết cho 111.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP