Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Nhận thấy \({x^2} + 7 = x\left( {x + 1} \right) - \left( {x + 1} \right) + 8.\)
Do \(x\left( {x + 1} \right) \vdots \left( {x + 1} \right),\) nên \({x^2} + 7 \vdots \left( {x + 1} \right)\) khi và chỉ khi \(8 \vdots \left( {x + 1} \right).\)
Suy ra \(x + 1 \in \left\{ { - 8; - 4; - 2; - 1;\,\,1;\,\,2;\,\,4;\,\,8} \right\}.\)
Vậy \(x \in \left\{ { - 9;\,\, - 5;\,\, - 3;\,\, - 2;\,\,0;\,\,1;\,\,3;\,\,7} \right\}.\)
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 2:
Câu 5:
Cho \[a,{\rm{ }}b\] là các số nguyên. Chứng minh rằng \[5a{\rm{ }} + {\rm{ }}2b\] chia hết cho 17 khi và chỉ khi \[9a{\rm{ }} + {\rm{ }}7b\] chia hết cho 17.
Câu 6:
về câu hỏi!