Câu hỏi:

11/07/2024 3,990

Cho \[a,{\rm{ }}b\] là các số nguyên. Chứng minh rằng \[5a{\rm{ }} + {\rm{ }}2b\] chia hết cho 17 khi và chỉ khi \[9a{\rm{ }} + {\rm{ }}7b\] chia hết cho 17.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Xét hiệu \[5.(9a + 7b) - 9.(5a + 2b) = 17b\]

Nhận thấy \[17b\,\, \vdots \,\,17\] nên:

Nếu \[9a + 7b\]\[ \vdots \,\,17\] thì \[9.(5a + 2b)\]\[ \vdots \,\,17\], mà \[\left( {9;{\rm{ }}17} \right){\rm{ }} = {\rm{ }}1\] nên \[5a + 2b\]\[ \vdots \,\,17\]

Nếu \[5a + 2b\]\[ \vdots \,\,17\]thì \[5.(9a + 7b)\]\[ \vdots \,\,17\], mà \[\left( {5;{\rm{ }}17} \right){\rm{ }} = {\rm{ }}1\] nên \[(9a + 7b)\]\[ \vdots \,\,17\]

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Ta có: 2x  5 = 2(x  1)  3

Do đó để (2x  5)  (x  1) thì 3  (x  1), hay (x  1)  Ư(3) = {−3; −1; 1; 3}.

Ta có bảng giá trị:

x ‒ 1

‒3

‒1

1

3

x

‒2

0

2

4

Vậy các giá trị của x là: ‒2; 0; 2; 4.

Lời giải

Nhận thấy \(3x + 4 = 3\left( {x - 3} \right) + 5.\)

Do \(3\left( {x - 3} \right) \vdots \left( {x - 3} \right),\) nên \(\left( {3x + 4} \right) \vdots \left( {x - 3} \right)\) khi và chỉ khi \(5 \vdots \left( {x - 3} \right).\)

Suy ra \(x - 3 \in {\rm{\"O (5)}}\) hay \(x - 3 \in \left\{ { - 5; - 1;\,\,1;\,\,5} \right\}.\) Vậy \(x \in \left\{ { - 2;\,\,2;\,\,4;\,\,8} \right\}.\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP