Câu hỏi:

01/10/2022 389

Với a, b là số tự nhiên, nếu 10a + b chia hết cho 13 thì a + 4b chia hết cho số nào dưới đây?

Đáp án chính xác

Sách mới 2k7: 30 đề đánh giá năng lực DHQG Hà Nội, Tp. Hồ Chí Minh, BKHN 2025 mới nhất (chỉ từ 110k).

Mua bộ đề Hà Nội Mua bộ đề Tp. Hồ Chí Minh Mua đề Bách Khoa

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Trả lời:

Xét 10. (a+4.b) = 10.a + 40.b = (10.a + b) + 39.b

\[\left( {10.a + b} \right) \vdots 13\]\[39b \vdots 13\]nên \[10.\left( {a + 4.b} \right) \vdots 13\]

Do 10 không chia hết cho 13 nên suy ra \[\left( {a + 4.b} \right) \vdots 13\]

Vậy nếu 10a + b chia hết cho 13 thì a + 4b chia hết cho 13.

Đáp án cần chọn là: D

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Tổng nào sau đây chia hết cho 7

Xem đáp án » 01/10/2022 779

Câu 2:

Cho \[C = 1 + 3 + {3^2} + {3^3} + ... + {3^{11}}\]. Khi đó C chia hết cho số nào dưới đây?

Xem đáp án » 01/10/2022 556

Câu 3:

Cho a = 2m + 3, b = 2n + 1

Khẳng định nào sau đây đúng?

Xem đáp án » 01/10/2022 463

Câu 4:

Tìm A = 15 + 1003 + x với \[x \in N\]. Tìm điều kiện của x để \[A \vdots 5\]

Xem đáp án » 01/10/2022 350

Câu 5:

Chọn câu sai.

Xem đáp án » 01/10/2022 328

Câu 6:

Khi chia số a cho 12 ta được số dư là 9. Khi đó:

Xem đáp án » 01/10/2022 304

Bình luận


Bình luận