Câu hỏi:

08/10/2022 325

Cho các phân số \[\frac{6}{{n + 8}};\frac{7}{{n + 9}};\frac{8}{{n + 10}};...;\frac{{35}}{{n + 37}}\]. Tìm số tự nhiên nn nhỏ nhất để các phân số trên tối giản.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack
Trả lời:

Các phân số đã cho đều có dạng  \[\frac{a}{{a + \left( {n + 2} \right)}}\]

Và tối giản nếu a và n + 2 nguyên tố cùng nhau

Vì: [a + (n + 2)] – a = n + 2 với

a = 6; 7; 8; .....; 34; 35

Do đó n + 2 nguyên tố cùng nhau với các số 6; 7; 8; .....; 34; 35

Số tự nhiên n+2 nhỏ nhất thỏa mãn tính chất này là 37

Ta có n+2=37nên n=37−2=35

Vậy số tự nhiên nhỏ nhất cần tìm là 35

Đáp án cần chọn là: A

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

Lời giải

Trả lời:

Ta có: \[\frac{{200}}{{520}} = \frac{5}{{13}}\]

Nên có dạng tổng quát là:

\[\frac{{5k}}{{13k}}\left( {k \in Z,k \ne 0} \right)\]

Do tổng và tử và mẫu của phân số cần tìm bằng 306 nên:

5k+13k=306

18k=306

k=306:18

k=17

Vậy phân số cần tìm là \[\frac{{5.17}}{{13.17}} = \frac{{85}}{{221}}\]

Đáp án cần chọn là: C

Câu 2

Lời giải

Trả lời:

+ Nhân cả tử và mẫu của A với 2.4.6…40 ta được:

\[A = \frac{{\left( {1.3...39} \right).\left( {2.4...40} \right)}}{{\left( {2.4.6...40} \right).\left( {21.22...40} \right)}}\]

\[ = \frac{{1.2.3...39.40}}{{\left( {2.1} \right).\left( {2.2} \right).\left( {2.3} \right)...\left( {2.20} \right).\left( {21.22...40} \right)}}\]

\[ = \frac{{1.2.3...39.40}}{{{2^{20}}.\left( {1.2.3...20.21.22...40} \right)}}\]

\[ = \frac{{11}}{{{2^{20}}}}\]

+ Nhân cả tử và mẫu của B với 2.4.6…2n ta được:

\[B = \frac{{\left( {1.3...\left( {2n - 1} \right)} \right).\left( {2.4...2n} \right)}}{{\left( {2.4.6...2n} \right).\left( {\left( {n + 1} \right).\left( {n + 2} \right)...2n} \right)}}\]

\[ = \frac{{1.2.3...\left( {2n - 1} \right).2n}}{{\left( {2.1} \right).\left( {2.2} \right).\left( {2.3} \right)...\left( {2.n} \right).\left( {\left( {n + 1} \right).\left( {n + 2} \right)...2n} \right)}}\]

\[ = \frac{{1.2.3...\left( {2n - 1} \right).2n}}{{{2^n}.\left( {1.2.3...n.\left( {n + 1} \right).\left( {n + 2} \right)...2n} \right)}}\]

\[ = \frac{1}{{{2^n}}}\]

Vậy \[A = \frac{1}{{{2^{20}}}};B = \frac{1}{{{2^n}}}\]

Đáp án cần chọn là: A

Câu 3

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP