Câu hỏi:

29/10/2022 12,536

Một nhóm có 6 học sinh gồm 4 nam và 2 nữ. Hỏi có bao nhiêu cách chọn ra 3 học sinh trong đó có cả nam và nữ.

Đáp án chính xác

Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).

Tổng ôn toán Tổng ôn lý Các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Hướng dẫn giải

Đáp án đúng là: D

Vì chọn ra 3 học sinh có cả nam và nữ nên xảy ra các trường hợp sau:

Trường hợp , chọn  nam và 2 nữ

Công đoạn 1, chọn 1 nam trong 4 nam có 4 cách chọn;

Công đoạn 2, chọn 2 nữ trong 2 nữ có C22 = 1 cách chọn;

Áp dụng quy tắc nhân trường hợp 1 có 4.1 = 4 cách chọn.

Trường hợp 2, chọn 2 nam và nữ có:

Công đoạn 1, chọn 2 nam trong 4 nam có  C42 = 6 cách chọn;

Công đoạn 2, chọn 1 nữ trong 2 nữ có 2 cách chọn;

Áp dụng quy tắc nhân trường hợp 2 có 6.2 = 12 cách chọn.

Áp dụng quy tắc cộng cả hai trường hợp có 4 + 12 = 16 (cách chọn).

Vậy có 16 cách chọn để 3 học sinh được chọn có cả nam và nữ.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Có bao nhiêu cách xếp 5 sách Văn khác nhau và 7 sách Toán khác nhau trên một kệ sách dài sao cho sách Văn phải xếp kề nhau và sách Toán xếp kề nhau?

Xem đáp án » 29/10/2022 35,329

Câu 2:

Có bao nhiêu số tự nhiên gồm 5 chữ số chia hết cho 10

Xem đáp án » 29/10/2022 34,222

Câu 3:

Có 10 quả cầu đỏ được đánh số từ 1 đến 10, 7 quả cầu xanh được đánh số từ 1 đến 7 và 8 quả cầu vàng được đánh số từ 1 đến 8. Hỏi có bao nhiêu cách lấy ra 3 quả cầu khác màu và khác số.

Xem đáp án » 29/10/2022 19,823

Câu 4:

Giả sử ta dùng 5 màu để tô cho 3 nước khác nhau trên bản đồ và không có màu nào được dùng hai lần. Số các cách để chọn những màu cần dùng là:

Xem đáp án » 29/10/2022 16,895

Câu 5:

Từ 2 chữ số 1 và 8 lập được bao nhiêu số tự nhiên có 8 chữ số sao cho không có 2 chữ số 1 đứng cạnh nhau?

Xem đáp án » 29/10/2022 15,653

Câu 6:

Tên 15 học sinh được ghi vào 15 tờ giấy để vào trong hộp. Có bao nhiêu cách chọn tên 4 học sinh để cho đi du lịch

Xem đáp án » 29/10/2022 7,566

Bình luận


Bình luận
Đăng ký gói thi VIP

VIP 1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 2 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 3 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 4 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

tailieugiaovien.com.vn