Câu hỏi:

31/10/2022 443

Cho hai đường thẳng AB và CD cắt nhau tại O sao cho BOD^ = 43°. Khẳng định nào sau đây sai?

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Hướng dẫn giải

Đáp án đúng là: D

Hai đường thẳng AB và CD cắt nhau tại O nên OA là tia đối của tia OB, OC là tia đối của tia OD. Vậy BOD^ AOC^ là 2 góc đối đỉnh ( Định nghĩa hai góc đối đỉnh ).

Nên BOD^ = AOC^= 43°. Khẳng định A đúng. Khẳng định D sai.

Hai góc BOD^ AOD^ có một cạnh chung OD, hai cạnh OA và OB là hai tia đối nhau nên BOD^ AOD^là hai góc kề bù ( Định nghĩa hai góc kề bù ).

Ta có BOD^ + AOD^ = 180° ( Tính chất hai góc kề bù )

AOD^ = 180°BOD^ = 137°. Khẳng định C đúng.

Hai đường thẳng AB và CD cắt nhau tại O nên OA là tia đối của tia OB, OC là tia đối của tia OD. Vậy BOC ^AOD^ là 2 góc đối đỉnh ( Định nghĩa hai góc đối đỉnh ).

BOC ^= AOD^= 137°. Khẳng định B đúng.

Vậy đáp án đúng là D.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Hướng dẫn giải

Đáp án đúng là: B

Hai đường thẳng AB và CD cắt nhau tại O nên OA là tia đối của tia OB, OC là tia đối của tia OD. Suy ra BOD^ AOC^ là 2 góc đối đỉnh ( Định nghĩa hai góc đối đỉnh ).

Ta có BOD^ = AOC^( Tính chất hai góc đối đỉnh ).

Lại có:  AOC^=15BOC^5.AOC^=BOC^

AOC^ + BOC^ = AOB^ = 180° 6 AOC^= 180° AOC^= 30° = BOD^.

Vậy BOD^ = 30°. Đáp án đúng là B.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP