Cho ∆DEF và tam giác tạo bởi ba đỉnh M, N, P là hai tam giác bằng nhau. Biết rằng mỗi tam giác không có hai cạnh nào bằng nhau và không có hai góc nào bằng nhau. Biết và FD = PN. Cách kí hiệu nào sau đây đúng?
Cho ∆DEF và tam giác tạo bởi ba đỉnh M, N, P là hai tam giác bằng nhau. Biết rằng mỗi tam giác không có hai cạnh nào bằng nhau và không có hai góc nào bằng nhau. Biết và FD = PN. Cách kí hiệu nào sau đây đúng?
Quảng cáo
Trả lời:
Hướng dẫn giải
Đáp án đúng là: C
Ta có (giả thiết)
Do đó D và P là hai đỉnh tương ứng.
Mà FD = PN.
Suy ra F và N là hai đỉnh tương ứng.
Từ đó ta có E và M là hai đỉnh tương ứng.
Vì vậy ta kí hiệu là: ∆DEF = ∆PMN.
Do đó ta chọn phương án C.
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Hướng dẫn giải
Đáp án đúng là: B
Ta có ∆ABC = ∆MNP (giả thiết)
Suy ra:
⦁ AB = MN; AC = MP và BC = NP (các cặp cạnh bằng nhau);
⦁ và (các cặp góc bằng nhau).
Vì AB = MN nên phương án A đúng.
Vì MP = AC nên phương án C đúng.
Vì nên phương án D đúng.
Vì vậy phương án B sai.
Do đó ta chọn phương án B.
Lời giải
Hướng dẫn giải
Đáp án đúng là: A
Ta có AC = IK và BC = HI (giả thiết)
Do đó C và I là hai đỉnh tương ứng.
Suy ra A và K; B và H là hai cặp đỉnh tương ứng còn lại.
Vì vậy ta kí hiệu là: ∆ABC = ∆KHI.
Vậy ta chọn phương án A.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.