Câu hỏi:

31/10/2022 633

Cho hình vẽ bên. Biết rằng AB = AC.

Cho hình vẽ bên. Biết rằng AB = AC.  Kết luận nào sau đây đúng? (ảnh 1)

Kết luận nào sau đây đúng?

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Hướng dẫn giải

Đáp án đúng là: A

Xét ∆ABK và ∆ACD, có:

AB = AC (giả thiết)

BAK^=CAD^=90°.

ABK^=ACD^ (giả thiết)

Do đó ∆ABK = ∆ACD (g.c.g)

Suy ra AKB^=ADC^, BK = CD và AK = AD (các cặp góc và cặp cạnh tương ứng)

Vì vậy phương án A đúng, phương án B, C, D sai.

Vậy ta chọn phương án A.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

Cho ∆ABC. Gọi I là trung điểm của AC. Trên tia đối của tia IB, lấy điểm E sao cho IE = IB. Khẳng định nào sau đây đúng?

Lời giải

Hướng dẫn giải

Đáp án đúng là: D

Xét ∆AIE và ∆CIB, có:

AI = CI (I là trung điểm của AC)

IE = IB (giả thiết)

AIE^=BIC^ (hai góc đối đỉnh)

Do đó ∆AIE = ∆CIB (c.g.c)

Vì vậy phương án C đúng.

Ta có ∆AIE = ∆CIB (chứng minh trên)

Suy ra AE = BC và EAI^=ICB^ (cặp cạnh và cặp góc tương ứng)

Vì vậy phương án A đúng.

Ta có EAI^=ICB^ (chứng minh trên)

Mà hai góc này ở vị trí so le trong.

Suy ra AE // BC.

Do đó phương án B đúng.

Vậy ta chọn phương án D.

Lời giải

Hướng dẫn giải

Đáp án đúng là: D

Cho tam giác ABC, điểm M thuộc cạnh BC. Đường thẳng đi qua M và song song (ảnh 1)

Xét ∆AMD và ∆MAE, có:

AM là cạnh chung.

AMD^=MAE^ (MD // AE)

MAD^=AME^ (ME // AD)

Do đó ∆AMD = ∆MAE (g.c.g)

Suy ra ME = AD và ADM^=AEM^ (cặp cạnh và cặp góc tương ứng).

Do đó (I), (II), (III) đều đúng.

Vậy ta chọn phương án D.

Câu 3

Cho hình vẽ bên.

Cho hình vẽ bên.   Có bao nhiêu cặp tam giác bằng nhau?  A. 1;	 (ảnh 1)

Có bao nhiêu cặp tam giác bằng nhau?

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

Cho hình vẽ sau. Biết AB // CD và AD // BC.

Cho hình vẽ sau. Biết AB // CD và AD // BC.   Hình vẽ trên có mấy cặp tam giác (ảnh 1)

Hình vẽ trên có mấy cặp tam giác bằng nhau?

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Cho tam giác ABC cân tại A, có A^=24°. Trên tia đối của tia BC lấy điểm D sao cho ADB^=30°, trên tia đối của tia CB lấy điểm E sao cho BD = CE. Tính BAE^?

Cho tam giác ABC cân tại A, có góc A=24 độ. Trên tia đối của tia BC lấy điểm D sao (ảnh 1)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay