Câu hỏi:

04/11/2022 294

Tìm n biết: \(A_n^3 = 20n\).

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Hướng dẫn giải

Đáp án đúng là: A

Ta có: \(A_n^3 = n(n - 1)(n - 2) = 20n\)

n(n – 1)(n – 2) – 20n = 0

(n2 – n)(n – 2) – 20n = 0

n3 – 2n2 – n2  + 2n – 20n = 0

n3 – 3n2 – 18n = 0

(n – 6). n . (n + 3) =0

\( \Leftrightarrow \left[ \begin{array}{l}n = - 3\,\,\,(ktm)\\n = 0\,\,\,\,\,\,(ktm)\\n = 6\,\,\,\,\,\,\,(tm)\end{array} \right.\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Hướng dẫn giải

Đáp án đúng là: D

Ta có:

\(M = \frac{{A_n^6 + A_n^5}}{{A_n^4}}\)

= \(\frac{{n.(n - 1).(n - 2)...(n - 5) + n(n - 1).(n - 2)...(n - 4)}}{{n(n - 1)...(n - 3)}}\)

\( = \frac{{n(n - 1)(n - 2)(n - 3)\left[ {(n - 4)(n - 5) + (n - 4)} \right]}}{{n(n - 1)(n - 2)(n - 3)}}\)

= (n – 4)(n – 5) + (n – 4)

= n2 – 4n – 5n + 20 + n – 4

= n2 – 8n + 16 = (n – 4)2.

Lời giải

Hướng dẫn giải

Đáp án đúng là: C

\(A = \frac{{6!}}{{m\left( {m + 1} \right)}}.\frac{{\left( {m + 1} \right)!}}{{4!.\left( {m - 1} \right)!}}\)

\( \Leftrightarrow A = \frac{{6.5.4!}}{{m\left( {m + 1} \right)}}.\frac{{\left( {m + 1} \right).m.\left( {m - 1} \right)!}}{{4!.\left( {m - 1} \right)!}}\)

\( \Leftrightarrow A = \frac{{6.5.4!.\left( {m + 1} \right).m.\left( {m - 1} \right)!}}{{m\left( {m + 1} \right).4!.\left( {m - 1} \right)!}}\)

\( \Leftrightarrow \)A = 6 . 5 = 30.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP