Câu hỏi:

05/11/2022 4,343

Rút gọn biểu thức \(M = \frac{{A_n^6 + A_n^5}}{{A_n^4}}\) với n ℕ, n ≥ 6 ta thu được kết quả là:

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Hướng dẫn giải

Đáp án đúng là: D

Ta có:

\(M = \frac{{A_n^6 + A_n^5}}{{A_n^4}}\)

= \(\frac{{n.(n - 1).(n - 2)...(n - 5) + n(n - 1).(n - 2)...(n - 4)}}{{n(n - 1)...(n - 3)}}\)

\( = \frac{{n(n - 1)(n - 2)(n - 3)\left[ {(n - 4)(n - 5) + (n - 4)} \right]}}{{n(n - 1)(n - 2)(n - 3)}}\)

= (n – 4)(n – 5) + (n – 4)

= n2 – 4n – 5n + 20 + n – 4

= n2 – 8n + 16 = (n – 4)2.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Hướng dẫn giải

Đáp án đúng là: D

Trường hợp 1: Chọn 1 cuốn tiểu thuyết và 1 cuốn truyện tranh

Có 10 cách chọn 1 cuốn tiểu thuyết; Có 8 các chọn 1 cuốn truyện tranh

Do đó có 10. 8 = 80 cách chọn

Trường hợp 2: Chọn 1 cuốn tiểu thuyết và 1 cuốn tài liệu văn học

Có 10 cách chọn 1 cuốn tiểu thuyết; Có 6 cách chọn 1 cuốn tài liệu văn học

Do đó có 10. 6 = 60 cách chọn

Trường hợp 3: Chọn 1 cuốn truyện tranh và 1 cuốn tài liệu văn học

Có 8 cách chọn 1 cuốn truyện tranh và 6 cách chọn 1 cuốn tài liệu văn học

Do đó có 8. 6 = 48 cách chọn

Tổng số cách chọn là:

80 + 60 + 48 = 188 (cách chọn).

Câu 2

Lời giải

Hướng dẫn giải

Đáp án đúng là: C

ĐK: n ≥ 2, n

\(C_n^2 + A_n^2 = 9n.\)

\( \Leftrightarrow \frac{{n!}}{{2!\left( {n - 2} \right)!}} + \frac{{n!}}{{\left( {n - 2} \right)!}} = 9n\)

\( \Leftrightarrow \frac{{n.(n - 1)(n - 2)!}}{{2!.\left( {n - 2} \right)!}} + \frac{{n.(n - 1).(n - 2)!}}{{\left( {n - 2} \right)!}} = 9n\)

\( \Leftrightarrow \frac{{n.(n - 1)}}{2} + n.(n - 1) = 9n\)

\( \Leftrightarrow (n - 1)\left( {\frac{n}{2} + n} \right) = 9n\)

\( \Leftrightarrow \frac{3}{2}n\left( {n - 1} \right) = 9n\)

\[ \Leftrightarrow \frac{3}{2}{n^2} - \frac{3}{2}n - 9n = 0\]

\( \Leftrightarrow 3{n^2} - 3n - 18n = 0\)

\( \Leftrightarrow 3{n^2} - 21n = 0\)

\( \Leftrightarrow 3n\left( {n - 7} \right) = 0\)

\( \Leftrightarrow \left[ \begin{array}{l}3n = 0\\n - 7 = 0\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}n = 0(ktm)\\n = 7(tm)\end{array} \right.\)

Vậy n chia hết cho 7.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP