Câu hỏi:
13/07/2024 1,634Cho 6 hình vuông đơn vị, ta có hai cách xếp chúng để tạo thành các hình chữ nhật như hình dưới đây:
a) Nếu cho 7 hình vuông đơn vị thì ta có mấy cách xếp chúng thành các hình chữ nhật?
b) Nếu cho 12 hình vuông đơn vị thì ta có mấy cách xếp chúng thành các hình chữ nhật?
c) Cho n hình vuông đơn vị (n > 1). Với những số n nào thì ta chỉ có một cách xếp chúng thành hình chữ nhật? Với những số n nào thì ta có nhiều hơn một cách xếp chúng thành hình chữ nhật?
Câu hỏi trong đề: Giải SBT Toán lớp 6 KNTT Bài 10: Số nguyên tố có đáp án !!
Quảng cáo
Trả lời:
Ở ví dụ chúng ta nhận thấy có 6 hình vuông đơn vị, ta có 2 cách xếp chúng
Vì thế mà số hình vuông đơn vị bằng diện tích của hình chữ nhật khi đã xếp xong
Hay chính là ta đi phân tích 6 thành tích của chiều dài và chiều rộng
Ta có: 6 = 6. 1 = 3. 2
Vậy ta xếp 1 hàng 6 hình vuông đơn vị hoặc 2 hàng mỗi hàng có 3 hình vuông đơn vị
a) Ta có 7 = 7. 1
Do vậy ta có 1 cách xếp chúng thành hình chữ nhật.
Vậy ta xếp 1 hàng 7 hình vuông đơn vị
b) Ta có 12 = 12. 1 = 6. 2 = 4. 3
Do vậy ta có 3 cách xếp chúng thành hình chữ nhật.
Vậy ta xếp 1 hàng 12 hình vuông đơn vị; 2 hàng mỗi hàng có 6 hình vuông đơn vị hoặc 3 hàng có 4 hình vuông đơn vị.
c) Với n hình vuông đơn vị (n > 1) ta chỉ có một cách xếp chúng thành hình chữ nhật khi n là số nguyên tố
Lúc đó: n = n. 1
Vậy ta xếp 1 hàng n hình vuông đơn vị.
+) Với n là hợp số thì n có nhiều hơn 1 cách phân tích thành tích của các số nên có nhiều hơn 1 cách sắp xếp chúng thành hình chữ nhật.
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Tra bảng nguyên tố ta thấy 829 và 971 là số nguyên tố
Theo dấu hiệu chia hết cho 2; 3; 5 ta có 9 891 ⁝ 3; 12 344 ⁝ 2; 32 015 ⁝ 5 nên 9 891; 12 344; 32 015 là hợp số.
Lời giải
a) Từ bảng trên, ta có số 491, 499 là các số nguyên tố
Do đó để là số nguyên tố thì a = 1 hoặc a = 9.
Vậy a = 1 hoặc a = 9.
b)
Ta có các số 233; 239 là số nguyên tố.
Do đó để là hợp số thì a ∈ {0; 1; 2; 3; 4; 5; 6; 7; 8; 9};
Vậy a ∈ {0; 1; 2; 3; 4; 5; 6; 7; 8; 9}.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Đề thi Cuối học kì 2 Toán 6 có đáp án (Đề 1)
Đề kiểm tra Giữa kì 2 Toán 6 có đáp án (Mới nhất) - Đề 1
31 câu Trắc nghiệm Toán 6 Kết nối tri thức Bài 1: Tập hợp có đáp án
Dạng 1: Thực hiện tính, viết dưới dạng lũy thừa
Dạng 4: Một số bài tập nâng cao về lũy thừa
Đề thi Cuối học kì 2 Toán 6 có đáp án (Đề 2)
Dạng 4: Trung điểm của đoạn thẳng có đáp án
Dạng 1: tỉ số của hai đại lượng có đáp án
Hãy Đăng nhập hoặc Tạo tài khoản để gửi bình luận