Giải SGK Toán 6 KNTT Bài Luyện tập chung trang 54 - 55 có đáp án
30 người thi tuần này 4.6 1 K lượt thi 8 câu hỏi
🔥 Đề thi HOT:
31 câu Trắc nghiệm Toán 6 Kết nối tri thức Bài 1: Tập hợp có đáp án
5 câu Trắc nghiệm Toán 6 Cánh diều Bài 1: Tập hợp có đáp án ( Nhận biết )
10 câu Trắc nghiệm Toán 6 Chân trời sáng tạo Bài 1: Tập hợp. Phần tử của tập hợp (có đáp án)
10 Bài tập Các bài toán thực tế sử dụng phép nhân và phép chia (có lời giải)
20 câu Trắc nghiệm Toán 6 Kết nối tri thức Bài 1: Tập hợp có đáp án (Phần 2)
Nội dung liên quan:
Danh sách câu hỏi:
Lời giải
a)
+) Ở cột thứ hai:
a = 34 = 2.17; b = 51 = 3.17
⇒ ƯCLN(a; b) = 17 ; BCNN(a; b) = 2.3.17 = 102.
ƯCLN(a, b) . BCNN(a, b) = 17.102 = 1 734.
a.b = 34. 51 = 1 734.
+) Ở cột thứ ba:
a = 120 =23.3.5 ; b = 70 = 2.5.7
⇒ ƯCLN(a; b) = 2. 5 = 10 ; BCNN(a; b) = 23.3.5.7 = 840
ƯCLN(a, b) . BCNN(a, b) = 10. 840 = 8 400.
a.b = 120. 70 = 8 400.
+) Ở cột thứ tư:
a = 15 =3.5; b = 28 = 22.7
⇒ ƯCLN(a; b) = 1 ; BCNN(a; b) =
ƯCLN(a, b) . BCNN(a, b) =1. 420 = 420.
a.b = 15. 28 = 420.
+) Ở cột thứ năm:
a = 2 987; b = 1
⇒ ƯCLN(a; b) = 1 ; BCNN(a; b) = 2 987
ƯCLN(a, b) . BCNN(a, b) = 1 . 2 987 = 2 987.
a.b = 2 987 . 1 = 2 987
Ta có bảng sau:
a |
9 |
34 |
120 |
15 |
2 987 |
b |
12 |
51 |
70 |
28 |
1 |
ƯCLN(a, b) |
3 |
17 |
10 |
1 |
1 |
BCNN(a, b) |
36 |
102 |
840 |
420 |
2 987 |
ƯCLN(a, b) .BCNN(a, b) |
108 |
1 734 |
8 400 |
420 |
2 987 |
a.b |
108 |
1 734 |
8 400 |
420 |
2 987 |
b) So sánh: ƯCLN(a, b) . BCNN(a, b) = a.b
Em rút ra kết luận: tích của BCNN cà ƯCLN của hai số tự nhiên bất kì bằng tích của chúng.
Lời giải
a) 3.52 và 52.7
+) Ta thấy các thừa số nguyên tố chung là 5 và thừa số nguyên tố riêng là 3 và 7
+) Số mũ nhỏ nhất của 5 là 2 nên ƯCLN cần tìm là 52 = 25
+) Số mũ lớn nhất của 3 là 1, số mũ lớn nhất của 5 là 2, số mũ lớn nhất của 7 là 1 nên BCNN cần tìm là 3.52.7 = 525
Vậy ƯCLN cần tìm là 52 = 25
BCNN cần tìm là 3.52.7 = 525.
b) 22.3.5; 32.7 và 3.5.11
+) Ta thấy các thừa số nguyên tố chung là 3 và thừa số nguyên tố riêng là 2; 5; 7; 11
+) Số mũ nhỏ nhất của 3 là 1 nên ƯCLN cần tìm là 3
+) Số mũ lớn nhất của 2 là 2, số mũ lớn nhất của 3 là 2, số mũ lớn nhất của 5 là 1, số mũ lớn nhất của 7 là 1, số mũ lớn nhất của 11 là 1 nên BCNN cần tìm là 22.32.5.7.11 = 13 860
Vậy ƯCLN cần tìm là 3
BCNN cần tìm là 22.32.5.7.11 = 13 860.
Lời giải
a) Vì ƯCLN(15, 17) = 1 nên phân số là phân số tối giản.
b) Ta có: 70 = 2.7.5; 105= 3.5.7
+) Thừa số nguyên tố chung là 5 và 7
+ Số mũ nhỏ nhất của 5 là 1, số mũ nhỏ nhất của 7 là 1 nên ƯCLN(70, 105) = 35.
Do đó không là phân số tối giản
Ta có: . Ta được
là phân số tối giản vì ƯCLN(2, 3) = 1.
Lời giải
Đổi 360 giây = 6 phút, 420 giây = 7 phút
Giả sử sau x phút họ lại gặp nhau.
Vận động viên thứ nhất chạy một vòng sân hết 6 phút nên x là bội của 6.
Vận động viên thứ hai chạy một vòng sân hết 7 phút nên x là bội của 7.
Suy ra x ∈ BC(6; 7).
Mà x ít nhất nên x = BCNN(6; 7).
6 = 2.3; 7 = 7
x = BCNN(6; 7) = 2.3.7 = 42
Vậy sau 42 phút họ lại gặp nhau.
Lời giải
a) Ta có: 9 =32; 15 =3.5 nên BCNN(9, 15) = 32.5 = 45. Do đó ta có thể chọn mẫu chung là 45.
b) Ta có: 12 =22.3; 15 = 3.5 ; 27 = 33 nên BCNN(12, 15, 27) = 22.33.5 = 540. Do đó ta có thể chọn mẫu chung là 540.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.