Câu hỏi:
11/07/2024 3,382Các phân số sau đã tối giản chưa? Nếu chưa, hãy rút gọn về phân số tối giản.
a) b) .
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
a) Vì ƯCLN(15, 17) = 1 nên phân số là phân số tối giản.
b) Ta có: 70 = 2.7.5; 105= 3.5.7
+) Thừa số nguyên tố chung là 5 và 7
+ Số mũ nhỏ nhất của 5 là 1, số mũ nhỏ nhất của 7 là 1 nên ƯCLN(70, 105) = 35.
Do đó không là phân số tối giản
Ta có: . Ta được là phân số tối giản vì ƯCLN(2, 3) = 1.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 2:
Cho bảng sau:
a |
9 |
34 |
120 |
15 |
2 987 |
b |
12 |
51 |
70 |
28 |
1 |
ƯCLN(a, b) |
3 |
? |
? |
? |
? |
BCNN(a, b) |
36 |
? |
? |
? |
? |
ƯCLN(a, b) .BCNN(a, b) |
108 |
? |
? |
? |
? |
a.b |
108 |
? |
? |
? |
? |
a) Tìm các số thích hợp thay vào ô trống trong bảng;
b) So sánh tích ƯCLN(a, b) . BCNN(a, b) và a.b.
Em rút ra kết luận gì?
Câu 3:
Tìm ƯCLN và BCNN của:
a) 3.52 và 52.7
b) 22.3.5; 32.7 và 3.5.11
Câu 4:
Câu 5:
Hai vận động viên chạy xung quanh một sân vận động. Hai vận động viên xuất phát tại cùng một thời điểm, cùng vị trí và chạy cùng chiều. Vận động viên thứ nhất chạy một vòng sân hết 360 giây, vận động viên thứ hai chạy một vòng sân mất 420 giây. Hỏi sau bao nhiêu phút họ lại gặp nhau, biết tốc độ di chuyển của họ không đổi?
Câu 6:
về câu hỏi!