Câu hỏi:

13/07/2024 438

Điền các từ thích hợp vào chỗ chấm:

a) Nếu a ⁝ 7 và b ⁝ 7 thì 7 là……. của a và b.

b) Nếu 9 là số lớn nhất sao cho a ⁝ 9 và b ⁝ 9 thì 9 là …….. của a và b.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

a) Nếu a ⁝ 7 và b ⁝ 7 thì 7 là ước chung của a và b.

b) Nếu 9 là số lớn nhất sao cho a ⁝ 9 và b ⁝ 9 thì 9 là ước chung lớn nhất của a và b.

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Vì ƯCLN(a, b) = 16 ⇒ a và b là bội của 16, ta giả sử a = 16m; b = 16n với 

ƯCLN(m, n) = 1 và do các số tự nhiên khác 0 nên m,n ∈ N*

Ta có a + b = 96 nên 16. m + 16. n = 96

                                      16. (m + n) = 96

                                               m + n = 96: 16

                                               m + n = 6

Ta có bảng sau:

Tìm tất cả các số tự nhiên a khác 0 và b khác 0 sao cho a + b = 96 và ƯCLN(a, b) = 16. Vì ƯCLN(a, b) = 16 ⇒ a và b là bội của 16 (ảnh 1)

+) Với m = 1; n = 5 ta được a = 1. 16 = 16;  b = 5. 16 = 80

+) Với m = 5; n = 1, ta được a = 5. 16 = 80;  b = 1. 16 = 16

Vậy các cặp số (a; b) thỏa mãn là (16; 80); (80; 16)

Lời giải

a) Ta có:

21 = 3.7;           36 = 22.32

+) Thừa số nguyên tố chung là 3 với số mũ nhỏ nhất là 1 nên ƯCLN(21, 36) = 3.  

Do đó Các phân số sau có là phân số tối giản hay không? Hãy rút gọn chúng không là phân số tối giản.

Các phân số sau có là phân số tối giản hay không? Hãy rút gọn chúng. Ta được Các phân số sau có là phân số tối giản hay không? Hãy rút gọn chúng là phân số tối giản vì ƯCLN(7, 12) = 1

b) Ta có:

23 = 23;           73 = 73

+) Không có thừa số nguyên tố chung nên ƯCLN(23, 73) = 1.  

Do đó Các phân số sau có là phân số tối giản hay không? Hãy rút gọn chúng là phân số tối giản.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay