Câu hỏi:

13/07/2024 1,379

Tìm tất cả các cặp số tự nhiên khác 0, không vượt quá 60 sao cho ƯCLN của hai số đó là 17.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Giả sử cặp số cần tìm là a và b với a,b ≠ 0 . Vì ƯCLN của hai số đó là 17 ⇒ a và b chia hết cho 17 hay a và b đều là bội của 17.

B(17) = {0; 17; 34; 51; 68; …}

Vì các cặp số tự nhiên khác 0, không vượt quá 60 nên a và b thuộc {17; 34; 51}

Do đó ta có các cặp số (a; b) là (17; 34); (17; 51); (34; 51)

Thử lại: ƯCLN(17; 34) = 17 nên (17; 34) thỏa mãn

               ƯCLN(17; 51) = 17 nên (17; 51) thỏa mãn

               ƯCLN(34; 51) = 17 nên (34; 51) thỏa mãn

Vậy các cặp số cần tìm là (17; 34); (17; 51); (34; 51)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Vì ƯCLN(a, b) = 16 ⇒ a và b là bội của 16, ta giả sử a = 16m; b = 16n với 

ƯCLN(m, n) = 1 và do các số tự nhiên khác 0 nên m,n ∈ N*

Ta có a + b = 96 nên 16. m + 16. n = 96

                                      16. (m + n) = 96

                                               m + n = 96: 16

                                               m + n = 6

Ta có bảng sau:

Tìm tất cả các số tự nhiên a khác 0 và b khác 0 sao cho a + b = 96 và ƯCLN(a, b) = 16. Vì ƯCLN(a, b) = 16 ⇒ a và b là bội của 16 (ảnh 1)

+) Với m = 1; n = 5 ta được a = 1. 16 = 16;  b = 5. 16 = 80

+) Với m = 5; n = 1, ta được a = 5. 16 = 80;  b = 1. 16 = 16

Vậy các cặp số (a; b) thỏa mãn là (16; 80); (80; 16)

Lời giải

a) Ta có:

21 = 3.7;           36 = 22.32

+) Thừa số nguyên tố chung là 3 với số mũ nhỏ nhất là 1 nên ƯCLN(21, 36) = 3.  

Do đó Các phân số sau có là phân số tối giản hay không? Hãy rút gọn chúng không là phân số tối giản.

Các phân số sau có là phân số tối giản hay không? Hãy rút gọn chúng. Ta được Các phân số sau có là phân số tối giản hay không? Hãy rút gọn chúng là phân số tối giản vì ƯCLN(7, 12) = 1

b) Ta có:

23 = 23;           73 = 73

+) Không có thừa số nguyên tố chung nên ƯCLN(23, 73) = 1.  

Do đó Các phân số sau có là phân số tối giản hay không? Hãy rút gọn chúng là phân số tối giản.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP