Quảng cáo
Trả lời:
Theo mình, hai số không chia hết cho 4 thì tổng của chúng có thể chia hết cho 4 hoặc không chia hết cho 4.
Ví dụ: 5 và 7 là hai số không chia hết cho 4 nhưng (5 + 7) = 12 ⁝ 4
5 và 9 là hai số không chia hết cho 4 nhưng (5 + 9) = 14 4
Vậy hai số không chia hết cho 4 thì chưa kết luận được tổng có chia hết cho 4 hay không.
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Gọi số người mỗi nhóm được chia là x (người)
Ta có mỗi nhóm có ít nhất 2 người và không quá 10 người nên
Vì đội thể thao của trường có 45 vận động viên và huấn luyện viên chia thành các nhóm mà mỗi nhóm có số người như nhau nên 45 ⁝ x hay x ∈ Ư(45)
Ta lại có Ư(45) = {1; 3; 5; 9; 15; 45}
Mà 2 ≤ x ≤ 10 do đó x ∈ {3; 5; 9}
Với số người mỗi nhóm được chia là 3 người thì số nhóm là: 45 : 3 = 15 (nhóm)
Với số người mỗi nhóm được chia là 5 người thì số nhóm là: 45 : 5 = 9 (nhóm)
Với số người mỗi nhóm được chia là 9 người thì số nhóm là: 45 : 9 = 5 (nhóm)
Vậy huấn luyện viên có thể chia thành 15 nhóm, 9 nhóm hoặc 5 nhóm
Lời giải
a) Lần lượt nhân 7 với 0; 1; 2; 3; 4; 5; … ta được các bội của 7 là: 0; 7; 14; 21; 28; 35; 42; 49; 56; 63; 70;…
Ta được B(7) = {0; 7; 14; 21; 28; 35; 42; 49; 56; 63; 70;…}
Mà x ∈ B(7) và x < 70 nên x ∈ {0; 7; 14; 21; 28; 35; 42; 49; 56; 63}.
b) Lần lượt chia 50 cho các số từ 1 đến 50, ta thấy 50 chia hết cho 1; 2; 5; 10; 25; 50 nên
Ư(50) = {1; 2; 5; 10; 25; 50}
Mà y ∈ Ư(50) và y > 5 nên y ∈ {10; 25; 50}.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.