Câu hỏi:

13/07/2024 380

Nếu tất cả các số hạng của một tổng đều chia hết cho cùng một số thì tổng đó:

A. Chia hết cho số đó.

B. Không chia hết cho số đó.

C. Là ước của số đó.

D. Không kết luận được.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Nếu tất cả các số hạng của một tổng đều chia hết cho cùng một số thì tổng đó chia hết cho số đó.

Đáp án: A

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Gọi số người mỗi nhóm được chia là x (người) 

Ta có mỗi nhóm có ít nhất 2 người và không quá 10 người nên Đội thể thao của trường có 45 vận động viên. Huấn luyện viên muốn chia thành

Vì đội thể thao của trường có 45 vận động viên và huấn luyện viên chia thành các nhóm mà mỗi nhóm có số người như nhau nên 45 ⁝ x hay x  Ư(45) 

Ta lại có Ư(45) = {1; 3; 5; 9; 15; 45}

Mà 2 ≤ x ≤ 10 do đó x  {3; 5; 9}

Với số người mỗi nhóm được chia là 3 người thì số nhóm là: 45 : 3 = 15 (nhóm)

Với số người mỗi nhóm được chia là 5 người thì số nhóm là: 45 : 5 = 9 (nhóm)

Với số người mỗi nhóm được chia là 9 người thì số nhóm là: 45 : 9 = 5 (nhóm)

Vậy huấn luyện viên có thể chia thành 15 nhóm, 9 nhóm hoặc 5 nhóm

Lời giải

a) Lần lượt nhân 7 với 0; 1; 2; 3; 4; 5; … ta được các bội của 7 là: 0; 7; 14; 21; 28; 35; 42; 49; 56; 63; 70;…

Ta được B(7) = {0; 7; 14; 21; 28; 35; 42; 49; 56; 63; 70;…}

Mà x  B(7) và x < 70 nên x  {0; 7; 14; 21; 28; 35; 42; 49; 56; 63}.

b) Lần lượt chia 50 cho các số từ 1 đến 50, ta thấy 50 chia hết cho 1; 2; 5; 10; 25; 50 nên 

Ư(50) = {1; 2; 5; 10; 25; 50}

Mà y  Ư(50) và y > 5 nên y  {10; 25; 50}.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay