Câu hỏi:

12/07/2024 514

Muốn tìm tập hợp ước chung chung của hai hay nhiều số tự nhiên, ta thực hiện:

A. Tìm ƯCLN của các số đó. Khi đó tập hợp ước chung của các số đó chính là tập hợp ước của ƯCLN.

B. Viết tập hợp các ước của các số đó ra. Tìm trong số đó các phần tử chung. Tập các phần tử đó chính là tập hợp ước chung của các số đó.

C. Cả A và B đều sai.

D. Cả A và B đều đúng.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Muốn tìm tập hợp ước chung chung của hai hay nhiều số tự nhiên, ta có hai cách để tìm như sau:

Cách 1. 

- Tìm ƯCLN của các số đó.

- Tìm các ước của ƯCLN đó.

- Kết luận tập hợp ƯC là tập các ước của ƯCLN.

Cách 2. 

- Liệt kê tập hợp ước của các số.

- Tìm các phần tử chung của các tập hợp đó.

- Tập hợp ƯC là tập các phần tử chung đó.

Vậy cả A và B đều đúng. 

Đáp án: D

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

a) Phân tích a và b ra thừa số nguyên tố

Ta có:

Cho hai số a = 72 và b = 96 a) Phân tích a và b ra thừa số nguyên tố

 Do đó: a = 72 = 23.32.

Lại có:

Cho hai số a = 72 và b = 96 a) Phân tích a và b ra thừa số nguyên tố

 Vậy  b = 96 = 25.3.

b) Ta thấy 2 và 3 là các thừa số chung của 70 và 96. Số mũ nhỏ nhất của 2 là 3 và số mũ nhỏ nhất của 3 là 1 nên

ƯCLN(72; 96) = 23 . 3 24

ƯC(a, b) = Ư(24) = {1; 2; 3; 4; 6; 8; 12; 24}.

Lời giải

a) Ta có:

50 = 2.52;           85 = 5.17

+) Thừa số nguyên tố chung là 5 với số mũ nhỏ nhất là 1 nên ƯCLN(50, 85) = 5.  

Do đó Các phân số sau đã là phân số tối giản chưa? Nếu chưa, hãy rút gọn không là phân số tối giản.

Các phân số sau đã là phân số tối giản chưa? Nếu chưa, hãy rút gọn . Ta được Các phân số sau đã là phân số tối giản chưa? Nếu chưa, hãy rút gọn là phân số tối giản vì ƯCLN(10, 17) = 1.

b) Ta có:

23 = 23;           81 = 34

Nên 23 và 81 không có thừa số nguyên tố chung nên ƯCLN(23, 81) = 1.  

Do đó Các phân số sau đã là phân số tối giản chưa? Nếu chưa, hãy rút gọn là phân số tối giản.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Tìm ƯCLN(36, 84).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay