Câu hỏi:

16/12/2022 3,207

Viết phương trình tổng quát của đường thẳng

a) đi qua M(– 1; – 4) và song song với đường thẳng 3x + 5y – 2 = 0;

b) đi qua N(1; 1) và vuông góc với đường thẳng 2x + 3y + 7 = 0.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án:

a) Gọi đường thẳng cần lập là d.

Vectơ pháp tuyến của đường thẳng 3x + 5y – 2 = 0 cũng là một vectơ pháp tuyến của đường thẳng d nên phương trình đường thẳng d có dạng 3x + 5y + c = 0 (c ≠ – 2).

Vì d đi qua điểm M(– 1; – 4) nên 3 . (– 1) + 5 . (– 4) + c = 0. Suy ra c = 23 (t/m).

Vậy phương trình tổng quát của đường thẳng d là 3x + 5y + 23 = 0.

b) Gọi đường thẳng cần lập là a.

Đường thẳng a vuông góc với đường thẳng 2x + 3y + 7 nên lấy vectơ pháp tuyến \(\overrightarrow n = \left( {2;\,\,3} \right)\) của đường thẳng 2x + 3y + 7 là vectơ chỉ phương của đường thẳng a. Khi đó, một vectơ pháp tuyến của đường thẳng a là \(\overrightarrow {{n_a}} = \left( {3;\,\, - 2} \right)\).

Đường thẳng a đi qua điểm N(1; 1) và có vectơ pháp tuyến là \(\overrightarrow {{n_a}} = \left( {3;\,\, - 2} \right)\) nên có phương trình là 3(x – 1) – 2(y – 1) = 0 hay 3x – 2y – 1 = 0.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

Lời giải

Đáp án đúng là: B

Cách 1. Thay tọa độ các điểm A, B lần lượt vào các phương trình trong các đáp án thì thấy đáp án B không thỏa mãn.

Cách 2. Nhận thấy rằng các phương trình ở các đáp án A, C, D thì vectơ chỉ phương của các đường thẳng đó cùng phương, riêng chủ có đáp án B thì không. Do đó chọn đáp án B.

Lời giải

Đáp án đúng là: B

Ta có: x2 – 8x + 7 ≥ 0 \(\left[ \begin{array}{l}x \le 1\\x \ge 7\end{array} \right.\).

Suy ra tập nghiệm của bất phương trình là S = (– ∞; 1] [7; + ∞].

Do đó, [6; + ∞) S.

Câu 3

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP