Câu hỏi:
16/12/2022 9,947
Hình dưới đây mô tả mặt cắt ngang của một chiếc đèn có dạng parabol trong mặt phẳng tọa độ Oxy (x và y tính bằng xen-ti-mét). Hình parabol có chiều rộng giữa hai mép vành là AB = 40 cm và chiều sâu h = 30 cm (h bằng khoảng cách từ O đến AB). Bóng đèn nằm ở tiêu điểm S. Viết phương trình chính tắc của parabol đó.

Quảng cáo
Trả lời:
Đáp án:
Parabol có phương trình chính tắc là: y2 = 2px (p > 0).
Vì AB = 40 cm và h = 30 cm nên A(30; 20).
Do A(30; 20) thuộc parabol nên ta có: 202 = 2p . 30 \( \Rightarrow p = \frac{{20}}{3}\).
Vậy parabol có phương trình chính tắc là: y2 = \(\frac{{40}}{3}x\).
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
- Sách - Sổ tay kiến thức trọng tâm Vật lí 10 VietJack - Sách 2025 theo chương trình mới cho 2k9 ( 31.000₫ )
- Trọng tâm Lí, Hóa, Sinh 10 cho cả 3 bộ KNTT, CTST và CD VietJack - Sách 2025 ( 40.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Đáp án đúng là: B
Cách 1. Thay tọa độ các điểm A, B lần lượt vào các phương trình trong các đáp án thì thấy đáp án B không thỏa mãn.
Cách 2. Nhận thấy rằng các phương trình ở các đáp án A, C, D thì vectơ chỉ phương của các đường thẳng đó cùng phương, riêng chủ có đáp án B thì không. Do đó chọn đáp án B.
Lời giải
Đáp án đúng là: B
Ta có: x2 – 8x + 7 ≥ 0 ⇔ \(\left[ \begin{array}{l}x \le 1\\x \ge 7\end{array} \right.\).
Suy ra tập nghiệm của bất phương trình là S = (– ∞; 1] ∪ [7; + ∞].
Do đó, [6; + ∞) ⊄ S.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.