Câu hỏi:

19/08/2025 5,103 Lưu

Số đo ba góc của một tam giác tỉ lệ với 4; 6; 8. Tính số đo mỗi góc của tam giác đó.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Gọi số đo ba góc của tam giác đó lần lượt là x, y, z (0° < x, y, z < 180°).

Tổng số đo ba góc trong tam giác bằng 180° nên x + y + z = 180°.

Số đo ba góc của một tam giác tỉ lệ với 4; 6; 8 nên \(\frac{x}{4} = \frac{y}{6} = \frac{z}{8}\).

Theo tính chất dãy tỉ số bằng nhau ta có:

\(\frac{x}{4} = \frac{y}{6} = \frac{z}{8} = \frac{{x + y + z}}{{4 + 6 + 8}} = \frac{{180^\circ }}{{18}} = 10^\circ \)

Suy ra x = 4.10° = 40°; y = 6.10° = 60°; z = 8.10° = 80°.

Vậy số đo ba góc của một tam giác là 40°; 60° và 80°.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

M(x) = P(x) + Q(x).

M(x) = (5x5 – 4x2 – 7x + 15) + (–5x5 + 4x2 + 3x – 7)

         = 5x5 – 4x2 – 7x + 15 – 5x5 + 4x2 + 3x – 7

         = –4x + 8.

Ta có M(x) = 0

Suy ra –4x + 8 = 0

               x = 2.

Vậy đa thức M(x) có nghiệm là x = 2.

Lời giải

Ta thực hiện đặt tính chia đa thức như sau:

Tìm số nguyên x để đa thức A(x) = 2x^3 - 3x^2 + 2x + 2 chia hết cho đa thức B(x) = x^2 (ảnh 1)

Để đa thức A(x) = 2x3 – 3x2 + 2x + 2 chia hết cho đa thức B(x) = x2 + 1 thì 5 ⁝ (x2 + 1)

Hay (x2 + 1) Ư(5) = {–1; 1; –5; 5}.

Mà x2 + 1 ≥ 1 với mọi số nguyên x.

Do đó (x2 + 1) {1; 5}.

• Với x2 + 1 = 1 suy ra x = 0 (thỏa mãn x là số nguyên)

• Với x2 + 1 = 5

Suy ra x2 = 4

Do đó x = 2 (thỏa mãn) hoặc x = –2 (thỏa mãn)

Vậy có 3 giá trị của x thỏa mãn đề bài là x {0; –2; 2}.

Câu 4

A. AB + BC < AC;

B. AC – BC > AB;

C. AB + BC > AC;

D. AB + BC = AC.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. Biến cố chắc chắn luôn xảy ra;

B. Biến cố không thể không bao giờ xảy ra;

C. Xác suất của biến cố ngẫu nhiên bằng 1;

D. Biến cố có khả năng xảy ra cao hơn sẽ có xác suất lớn hơn.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP