Câu hỏi:

27/12/2022 1,875

Trong một phép thử, bạn An xác định được biến cố M, biến cố N có xác suất lần lượt là \(\frac{1}{3}\)\(\frac{1}{2}\). Hỏi biến cố nào có khả năng xảy ra thấp hơn?

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án đúng là: A

\(\frac{1}{3} < \frac{1}{2}\) nên xác suất xảy ra biến cố M nhỏ hơn xác suất xảy ra biến cố N.

Do đó biến cố M có khả năng xảy ra thấp hơn biến cố N.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Cho tam giác ABC vuông tại A, đường phân giác BD (D ∈ AC). Từ D kẻ DH vuông góc với BC.  a) Chứng minh ΔABD = ΔHBD.  b) So sánh AD và DC.  c) Gọi K là giao điểm của đường thẳng AB và DH, I là (ảnh 1)

a) Xét ∆ABD và ∆HBD có

 BAD^=BHD^=90°

BD là cạnh chung

ABD^=HBD^ (do BD là tia phân giác của góc ABD)

Do đó ΔABD = ΔHBD (cạnh huyền – góc nhọn).

b) Từ ΔABD = ΔHBD (câu a) suy ra AD = HD (hai cạnh tương ứng)

Xét ΔDHC vuông tại H có DC là cạnh huyền nên DC là cạnh lớn nhất

Do đó DC > HD nên DC > AD.

c) Xét ΔBKC có CA ⊥ BK, KH ⊥ BC và CA cắt KH tại D

Do đó D là trực tâm của ΔBKC, nên BD ⊥ KC          (1)

Gọi J là giao điểm của BD và KC.

Xét ΔBKJ và ΔBCJ có:

BJK^=BJC^=90°

BJ là cạnh chung,

KBJ^=CBJ^ (do CJ là tia phân giác của góc ABD)

Do đó ΔBKJ = ΔBCJ (cạnh góc vuông – góc nhọn kề)

Suy ra KJ = CJ (hai cạnh tương ứng)

Hay J là trung điểm của KC.

Mà theo bài I là trung điểm của KC nên I và J trùng nhau.

Do đó ba điểm B, D, I thẳng hàng.

Lời giải

Giải:

Gọi số công nhân tham gia làm việc của đội thứ nhất, đội thứ hai, đội thứ ba lần lượt là x, y, z.

Số công nhân của đội thứ ba ít hơn số công nhân của đội thứ hai là 5 người nên y – z = 5.

Với cùng một khối lượng công việc, số công nhân tham gia làm việc và thời gian hoàn thanh công việc của mỗi đội là hai đại lượng tỉ lệ nghịch với nhau.

Do đó, ta có 2x = 3y = 4z suy ra \(\frac{x}{{\frac{1}{2}}} = \frac{y}{{\frac{1}{3}}} = \frac{z}{{\frac{1}{4}}}\).

Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\frac{x}{{\frac{1}{2}}} = \frac{y}{{\frac{1}{3}}} = \frac{z}{{\frac{1}{4}}} = \frac{{y - z}}{{\frac{1}{3} - \frac{1}{4}}} = \frac{5}{{\frac{1}{{12}}}} = 60\).

Từ đó suy ra \(x = 60.\frac{1}{2} = 30\), \(y = 60.\frac{1}{3} = 20\), \(z = 60.\frac{1}{4} = 15\).

Vậy số công nhân tham gia làm việc của đội thứ nhất, đội thứ hai, đội thứ ba lần lượt là 30 người, 20 người, 15 người.

Câu 3

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP