Câu hỏi:

27/12/2022 6,428

Khẳng định nào sau đây là đúng?

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án đúng là: D

Trong một tam giác, cạnh đối diện với góc lớn hơn là cạnh lớn hơn; góc đối diện với cạnh nhỏ hơn là góc nhỏ hơn.

Trong một tam giác vuông, cạnh huyền là cạnh lớn nhất.

Trong một tam giác tù, cạnh đối diện với góc tù là cạnh lớn nhất.

Vậy ta chọn phương án D.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Cho tam giác ABC vuông tại A, đường phân giác BD (D ∈ AC). Từ D kẻ DH vuông góc với BC.  a) Chứng minh ΔABD = ΔHBD.  b) So sánh AD và DC.  c) Gọi K là giao điểm của đường thẳng AB và DH, I là (ảnh 1)

a) Xét ∆ABD và ∆HBD có

 BAD^=BHD^=90°

BD là cạnh chung

ABD^=HBD^ (do BD là tia phân giác của góc ABD)

Do đó ΔABD = ΔHBD (cạnh huyền – góc nhọn).

b) Từ ΔABD = ΔHBD (câu a) suy ra AD = HD (hai cạnh tương ứng)

Xét ΔDHC vuông tại H có DC là cạnh huyền nên DC là cạnh lớn nhất

Do đó DC > HD nên DC > AD.

c) Xét ΔBKC có CA ⊥ BK, KH ⊥ BC và CA cắt KH tại D

Do đó D là trực tâm của ΔBKC, nên BD ⊥ KC          (1)

Gọi J là giao điểm của BD và KC.

Xét ΔBKJ và ΔBCJ có:

BJK^=BJC^=90°

BJ là cạnh chung,

KBJ^=CBJ^ (do CJ là tia phân giác của góc ABD)

Do đó ΔBKJ = ΔBCJ (cạnh góc vuông – góc nhọn kề)

Suy ra KJ = CJ (hai cạnh tương ứng)

Hay J là trung điểm của KC.

Mà theo bài I là trung điểm của KC nên I và J trùng nhau.

Do đó ba điểm B, D, I thẳng hàng.

Lời giải

Giải:

Gọi số công nhân tham gia làm việc của đội thứ nhất, đội thứ hai, đội thứ ba lần lượt là x, y, z.

Số công nhân của đội thứ ba ít hơn số công nhân của đội thứ hai là 5 người nên y – z = 5.

Với cùng một khối lượng công việc, số công nhân tham gia làm việc và thời gian hoàn thanh công việc của mỗi đội là hai đại lượng tỉ lệ nghịch với nhau.

Do đó, ta có 2x = 3y = 4z suy ra \(\frac{x}{{\frac{1}{2}}} = \frac{y}{{\frac{1}{3}}} = \frac{z}{{\frac{1}{4}}}\).

Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\frac{x}{{\frac{1}{2}}} = \frac{y}{{\frac{1}{3}}} = \frac{z}{{\frac{1}{4}}} = \frac{{y - z}}{{\frac{1}{3} - \frac{1}{4}}} = \frac{5}{{\frac{1}{{12}}}} = 60\).

Từ đó suy ra \(x = 60.\frac{1}{2} = 30\), \(y = 60.\frac{1}{3} = 20\), \(z = 60.\frac{1}{4} = 15\).

Vậy số công nhân tham gia làm việc của đội thứ nhất, đội thứ hai, đội thứ ba lần lượt là 30 người, 20 người, 15 người.

Câu 3

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP