Câu hỏi:

13/07/2024 885

Cho đường tròn O, bán kính R. Từ một điểm M ở ngoài đường tròn (O) sao cho MO = 2R, ta kẽ hai tiếp tuyến MA và MB (A và B là tiếp điểm). Một cát tuyến bất kỳ qua M cắt đường tròn tại C và D . Kẻ tia phân giác của CAD^ cắt dây CD tại E và đường tròn tại N.

a).Chứng minh tứ giác OAMB nội tiếp được.

Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).

Tổng ôn toán Tổng ôn lý Các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack
Cho đường tròn O, bán kính R. Từ một điểm M ở ngoài đường tròn (O) sao cho MO = 2R, ta kẽ hai tiếp tuyến MA và MB (A và B là tiếp điểm). (ảnh 1)

a) Vì MA và MB là hai tiếp tuyến nên MAOA, MB OB nên

OAM^ + OBM^ = 900 + 900 = 1800 => OAMB là tứ giác nội tiếp

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Giải bài toán bằng các lập phương trình hoặc hệ phương trình:

           Quảng đường từ A đến B dài 120km . Hai ôtô khởi hành cùng một lúc đi từ  A đến B. Ôtô thứ nhất chạy nhanh hơn ôtô thứ hai 12km/h nên đến nơi sớm hơn ôtô thứ hai 30 phút. Tính vận tốc mỗi xe.

Xem đáp án » 13/07/2024 4,173

Câu 2:

Giải hệ phương trình: 5x+y=73y2x=4

Xem đáp án » 13/07/2024 1,720

Câu 3:

b) Rút gọn biểu thức B = 13+7+137

Xem đáp án » 06/02/2023 840

Câu 4:

c) Tính tích số MC.MD theo R.

Xem đáp án » 13/07/2024 697

Câu 5:

Cho phương trình x2 + 2(m - 1) – m2 = 0 với m là tham số.

a) Chứng minh rằng phương trình luôn có hai nghiệm phân biệt.

Xem đáp án » 13/07/2024 622

Câu 6:

b) Chứng minh MA = ME

Xem đáp án » 13/07/2024 586

Bình luận


Bình luận
Đăng ký gói thi VIP

VIP 1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 2 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 3 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 4 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

Vietjack official store