Câu hỏi:

12/07/2024 20,250

Cho tam giác ABC vuông tại A, đường cao AH. Biết BC = 8cm, BH = 2cm.

a) Tính độ dài các đoạn thẳng AB, AC, AH.

b) Trên cạnh AC lấy điểm K (K ≠ A, K ≠ C), gọi D là hình chiếu của A trên BK. Chứng minh rằng: BD.BK = BH.BC.

c) Chứng minh rằng: SBHD=14SBKC.cos2ABD^.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

a) Áp dụng HTL tam giác:

AB2=BH.BC=16AC2=BC.CH=882=48AH2=BH.CH=282=12AB=4cmAC=43cmAH=23cm

b) ADB^=AHB^=90°ADHB nội tiếp

DHA^=DBA^ (cùng chắn AD) (1)

CKB^=KAB^+ABD^=90°+ABD^DHB^=DHA^+AHB^=DHA^+90°ABD^=DHA^(cmt)

CKB^=DHB^

CKB^=DHB^CBK^  chungΔDHB~ΔCKBg.g

BDBC=BHBKBD.BK=BH.BC

c) Áp dụng công thức tính diện tích hình tam giác bằng nửa tích hai cạnh nhân sin góc xen giữa

SBHD=12BH.BD.sinDBH^

SBKC=12BK.BC.sinKBC^

Mà DBH^=KBC^

SBHDSBKC=BH.BDBK.BC=2BD8BK=BD4BK=BD24BK.BD

=14BD2AB2 (hệ thức lượng) =14.cos2ABD^

 

SBHD=14SBKC.cos2ABD^.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Lớp 10A có 45 học sinh trong đó có 25 em học giỏi môn Toán, 23 em học giỏi môn (ảnh 1)

Gọi số học sinh giỏi cả ba môn của lớp 10 A là x ( x > 0, x N )

Mà số học sinh lớp 10A là 45 học sinh .

x + 5 + x + 4 + x + 3 + 11 - x + 9 - x + 8 - x + x = 45

40 + x = 45

x = 5 (TM)

Vậy có 5 bạn giỏi cả ba môn toán lý và hóa.

Lời giải

Gọi số xe loại lớn, nhỏ cần thuê lần lượt là x, y xe, (x, y ≥ 0, x, y Z)

→ T = 4x + 2y (triệu đồng) là số tiền thuê xe.

Suy ra để số tiền thuê xe nhỏ nhất thì T = 4x + 2y nhỏ nhất

Theo bài ta có:

0x120y1040x+30y4505x+y35

 

Vẽ miền nghiệm của hệ trên, thấy các điểm giao nhau là:

A (12, 10), B (12, 0), C (11.250), D (5,10), E6011,8511

Suy ra:

TA = 68, TB = 48, TC = 45, TD = 40

→TD nhỏ nhất vì x, y Z

→Cần thuê 5 xe lớn và 10 xe nhỏ

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP