Câu hỏi:
12/07/2024 7,472Cho nửa đường tròn (O) đường kính AB = 2R. Vẽ đường thẳng d là tiếp tuyến của (O) tại B. Trên cung AB lấy điểm M tùy ý tia AM cắt d tại N. Gọi C là trung điểm của AM tia CO cắt d tại D.
a ) CMR OBNC nội tiếp.
b ) CMR NO vuông góc với AD.
c ) CMR CA . CN = CO . CD
d ) Xác định vị trí điểm M để (2AM + AN ) đạt GTNN.
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa... kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 70k).
Quảng cáo
Trả lời:
Câu a) Ta có: \[{\rm{\Delta OMA}}\] cân tại O và AC = MC nên \[OC \bot AM\;\] hay \[\widehat {OCN} = {90^0}\].
Xét tứ giác OBNC ta có :
\[\widehat {OCN} = {90^0}\] ( cmt )
\[\widehat {OBN} = {90^0}\] ( Tiếp tuyến vuông góc với bán kính )
\[ \Rightarrow \widehat {OCN} + \widehat {OBN} = {180^0}\]hay OBNC là tứ giác nội tiếp (đpcm )
Câu b ) Xét tam giác AND ta có :
AB là đường cao xuất phát từ đỉnh A.
DC là đường cao xuất phát từ đỉnh D.
Mà hai đường cao này cắt nhau tại O cho nên O là trực tâm của \[\Delta AND\]
NO cắt AD suy ra NO là đường cao của tam giác AND \[ \Rightarrow NO \bot AD\]
Câu c ) Ta có
\(\left\{ {\begin{array}{*{20}{c}}{\widehat {CAO} + \widehat {ANB} = {{90}^0}}\\{\widehat {CDN} + \widehat {ANB} = {{90}^0}}\end{array}} \right. \Rightarrow \widehat {CAO} = \widehat {CDN}\)
Xét tam giác CAO và tam giác CDN ta có :
\(\left\{ {\begin{array}{*{20}{c}}{\widehat {ACO} = \widehat {DCN}\left( { = {{90}^0}} \right)}\\{\widehat {CAO} = \widehat {CDB}\left( {cmt} \right)}\end{array}} \right.\)
\( \Rightarrow \Delta CAO \sim \Delta CDN\left( {g - g} \right)\)
\( \Rightarrow \frac{{CA}}{{CD}} = \frac{{CO}}{{CN}} \Rightarrow CA.CN = CO.CD\)( đpcm )
Câu d ) Xét tam giác AMB và tam giác ABN ta có :
\(\left\{ {\begin{array}{*{20}{c}}{\widehat {BAM}:\,chung}\\{\widehat {AMB} = \widehat {ABN}\left( { = {{90}^0}} \right)}\end{array}} \right.\)
\( \Rightarrow \Delta AMB \sim \Delta ABN\left( {g - g} \right)\)
\( \Rightarrow \frac{{AM}}{{AB}} = \frac{{AB}}{{AN}} \Rightarrow AM.AN = A{B^2} = 4{R^2}\)
Áp dụng BĐT cô – si ta có: \(2AM + AN \ge 2\sqrt {2AM.AN} = 2\sqrt {8{R^2}} = 4R\sqrt 2 \)
Vậy GTNN của 2AM + AN là \(4R\sqrt 2 \)khi và chỉ khi M là trung điểm của AN
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Câu 4:
Cho hình bình hành ABCD có AB = 2AD. Gọi E, F thứ tự là trung điểm của AB và CD
a) Các tứ giác AEFD, AECF là hình gì? Vì sao?
b) Gọi M là giao điểm của AF và DE, gọi N là giao điểm của BF và CE. Chứng minh rằng tứ giác EMFN là hình chữ nhật.
5920 câu Trắc nghiệm tổng hợp môn Toán 2023 có đáp án (Phần 1)
79 câu Chuyên đề Toán 12 Bài 2 Dạng 1: Xác định vectơ pháp tuyến và viết phương trình mặt phẳng có đáp án
56 câu Chuyên đề Toán 12 Bài 2: Lôgarit có đáp án
87 câu Chuyên đề Toán 12 Bài 3 Dạng 1: Xác định vectơ pháp tuyến và viết phương trình mặt phẳng có đáp án
7881 câu Trắc nghiệm tổng hợp môn Toán 2023 cực hay có đáp án ( Phần 1)
80 câu Trắc nghiệm Tích phân có đáp án (Phần 1)
124 câu Trắc nghiệm Ôn tập Toán 12 Chương 3 Hình học có đáp án (Phần 1)
7 câu Trắc nghiệm Khối đa diện lồi và khối đa diện đều có đáp án (Vận dụng)
về câu hỏi!