Cho hình chóp S. ABCD có đáy ABCD là nửa lục giác đều nội tiếp đường tròn đường kính AD, O là trung điểm của CD, Tính khoảng cách giữa SA và CD.
Quảng cáo
Trả lời:


Gọi I, N là trung điểm của AD, AB. Gọi H là tâm đường tròn ngoại tiếp tam giác ABO, vì tam giác ABI đều nên H thuộc NI.
Kẻ HK vuông góc CD, dựng hình bình hành AECD. Gọi F là giao điểm của BO và AE.
Ta có: nên
Vì ABCD là nửa lục giác đều nội tiếp đường tròn đường kính AD, nên tam giác BIC và CID là các tam giác đều, do đó ta có:
Suy ra
Diện tích
Thể tích của khối chóp S. AFO là:
Diện tích tam giác SAF:
Vậy
Hot: Danh sách các trường đã công bố điểm chuẩn Đại học 2025 (mới nhất) (2025). Xem ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải

Từ giả thiết ta có các tam giác ABD, là các tam giác đều.
Suy ra ta có: nên H là hình chiếu của A' trên mặt phẳng (ABCD) là tâm đường tròn ngoại tiếp tam giác đều ABD.
Do đó:
Vậy thể tích của khối hộp ABCD.A'B'C'D' là:
Lời giải
Hình chóp có n cạnh bên và n cạnh đáy nên sẽ có 2n cạnh.
Khi đó ta có:
Vậy hình chóp 16 cạnh sẽ có 8 mặt bên và 1 mặt đáy nên tổng số là 9 mặt.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.