Câu hỏi:

19/08/2025 1,191 Lưu

Có bao nhiêu số tự nhiên có 6 chữ số đôi một khác nhau trong đó chứa các chữ số 3, 4, 5 và chữ số 4 đứng cạnh chữ số 3 và chữ số 5?

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Gọi số tự nhiên có 6 chữ số đôi một khác nhau có dạng: abcdeg¯.

Sắp xếp cụm số 3, 4, 5 mà số 4 luôn đứng cạnh 3 và 5 thì ta có 2 cách sắp xếp: 345 và 543.

TH1: Nếu các cụm số 3, 4, 5 đứng đầu có các số tạo thành là: 2.7.6.5 =420(số)

TH2: Nếu các cụm số 3,4,5 không đứng đầu có 3 cách sắp xếp là: x345xx; xx345x; xxx345.

Khi đó 3 chữ số còn lại có: 6.6.5=180 cách chọn và sắp xếp.

Do đó ta có được các số tạo thành là: 2.3.180=1080 (số)

Áp dụng quy tắc cộng có: 420+1080=1500  số thỏa mãn yêu cầu bài toán.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Cho hình hộp ABCD.A'B'C'D' có các cạnh bằng 2a. Biết góc BAD= 60 độ, góc AA'B=A'AD=120 độ (ảnh 1)

Từ giả thiết ta có các tam giác ABD, A'AD,  A'AB là các tam giác đều.

Suy ra ta có: A'A=A'B=A'D nên H là hình chiếu của A' trên mặt phẳng (ABCD) là tâm đường tròn ngoại tiếp tam giác đều ABD.

Do đó: AH=23.2a.32=232a

A'H=A'A2AH2=263a.

Vậy thể tích của khối hộp ABCD.A'B'C'D' là: V=A'H.SABCD=263a.2.4a234=42a3.

Lời giải

Hình chóp S.A1A2...An   (n3) n cạnh bên và n cạnh đáy nên sẽ có 2n cạnh.

Khi đó ta có: 2n=16n=8.

Vậy hình chóp 16 cạnh sẽ có 8 mặt bên và 1 mặt đáy nên tổng số là 9 mặt.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

A.   Qua ba điểm xác định một và chỉ một mặt phẳng.

B.   Qua ba điểm phân biệt xác định một và chỉ một mặt phẳng.

C.   Qua ba điểm phân biệt không thẳng hàng xác định một mặt phẳng.

D.   Qua ba điểm phân biệt không thẳng hàng xác định một và chỉ một mặt phẳng.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP