Câu hỏi:

02/03/2023 223

1.   Tính giá trị của biểu thức Media VietJack với Media VietJack

2.     Cho biểu thức Media VietJack với Media VietJack

   Chứng minh rằng Media VietJack

3. Tìm x để Media VietJack

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

\(\begin{array}{l}1)\sqrt x = \sqrt {7 + 4\sqrt 3 } = 2 + \sqrt 3 \Rightarrow A = \frac{{2 + \sqrt 3 + 1}}{{2 + \sqrt 3 - 2}} = \sqrt 3 + 1\\2)B = \frac{{\sqrt x }}{{\sqrt x + 1}} + \frac{{1 - \sqrt x }}{{\sqrt x - 2}} - \frac{{\sqrt x + 4}}{{x - \sqrt x - 2}}\left( \begin{array}{l}x \ge 0\\x \ne 4\end{array} \right)\\ = \frac{{\sqrt x .\left( {\sqrt x - 2} \right) + \left( {1 - \sqrt x } \right)\left( {1 + \sqrt x } \right) - \sqrt x - 4}}{{\left( {\sqrt x + 1} \right)\left( {\sqrt x - 2} \right)}} = \frac{{x - 2\sqrt x + 1 - x - \sqrt x - 4}}{{\left( {\sqrt x + 1} \right)\left( {\sqrt x - 2} \right)}}\\ = \frac{{ - 3\sqrt x - 3}}{{\left( {\sqrt x + 1} \right)\left( {\sqrt x - 2} \right)}} = \frac{{ - 3\left( {\sqrt x + 1} \right)}}{{\left( {\sqrt x + 1} \right)\left( {\sqrt x - 2} \right)}} = \frac{{ - 3}}{{\sqrt x - 2}}\end{array}\)

\(3)P = \frac{B}{A} < - 1 \Leftrightarrow \frac{{ - 3}}{{\sqrt x - 2}}:\frac{{\sqrt x + 1}}{{\sqrt x - 2}} < - 1\)

\( \Leftrightarrow \frac{3}{{\sqrt x + 1}} > 1 \Leftrightarrow \frac{{3 - \sqrt x - 1}}{{\sqrt x + 1}} > 0 \Leftrightarrow 2 - \sqrt x > 0 \Leftrightarrow x < 4\)

Vậy \(0 \le x < 4\)thì \(P < - 1\)

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Media VietJack

\(a)MI \bot AC,MD \bot BC \Rightarrow \angle MIC + \angle MDC = 90^\circ + 90^\circ = 180^\circ \)

\( \Rightarrow MDCI\)là tứ giác nội tiếp

\(b)MDCI\)là tứ giác nội tiếp \( \Rightarrow \angle MID = \angle MCD\left( 1 \right);\)

\(\Delta ABC\)vuông cân \( \Rightarrow \angle ABD = 45^\circ \Rightarrow \Delta ABD\)cũng vuông cân

\( \Rightarrow \angle BAD = 45^\circ \Rightarrow \angle BAD = \angle DAC = 45^\circ \Rightarrow AD\)là tia phân giác của \(\angle BAC\)

\( \Rightarrow \Delta BAC\)cân tại A, có \(AD\)là phân giác nên đồng thời là trung trực

\( \Rightarrow MB = MC \Rightarrow \angle MBD = \angle MCD\left( 2 \right)\)

\(\left( 1 \right),\left( 2 \right) \Rightarrow \angle MID = \angle MBD = \angle MBC(dfcm)\)

c) \(HK \bot ID \Rightarrow \angle HAI + \angle IKH = 180^\circ \Rightarrow AHKI\)nội tiếp

mà \(AHMI\)cũng nội tiếp (vì \(\angle AHM = 90^\circ = \angle AIM)\)\( \Rightarrow A,H,M,K,I\)cũng thuộc đường tròn

\( \Rightarrow AMKI\)nội tiếp \( \Rightarrow \angle AMK = 90^\circ - \angle HAM = 45^\circ \)

Lại có : \(\angle DIC = \angle DMC = \angle BMD\)(MD là trung trực \(BC)\)

\( \Rightarrow \angle HMA + \angle HMB + \angle AMK = \angle HMB + \angle BMD + \angle HMA = \angle AMD = 180^\circ \)

\( \Rightarrow \angle BMK = 180^\circ \Rightarrow B,M,K\)thẳng hàng

Lời giải

Gọi \(\overline {ab} \)là số cần tìm \(\left( {a,b \in \mathbb{N}*,a,b \le 9} \right)\). Theo bài ta có hệ phương trình :

\(\left\{ \begin{array}{l}a + b = 9\\\overline {ab} = 2\overline {ba} + 18\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}a + b = 9\\8a - 19b = 18\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}a = 7\\b = 2\end{array} \right.\)(tm)

Vậy số cần tìm là \(72\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay