Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Xét hiệu : \(\frac{{{a^3}}}{b} - \left( {{a^2} + ab - {b^2}} \right)\)

\( = \frac{{{a^3} - {a^2}b - a{b^2} + {b^3}}}{b} = \frac{{{{\left( {a - b} \right)}^2}.\left( {a + b} \right)}}{b} \ge 0\)(vì \(a,b > 0)\)

Vậy \(\frac{{{a^3}}}{b} \ge {a^2} + ab - {b^2}\)

Chứng minh tương tự : \(\frac{{{b^3}}}{c} \ge {b^2} + bc - {c^2} & & & \frac{{{c^3}}}{b} \ge {c^2} + ca - {a^2}\)

\( \Rightarrow \frac{{{a^3}}}{b} + \frac{{{b^3}}}{c} + \frac{{{c^3}}}{a} \ge ab + bc + ca\)

Dấu xảy ra \( \Leftrightarrow a = b = c\)

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Media VietJack

\(a)MI \bot AC,MD \bot BC \Rightarrow \angle MIC + \angle MDC = 90^\circ + 90^\circ = 180^\circ \)

\( \Rightarrow MDCI\)là tứ giác nội tiếp

\(b)MDCI\)là tứ giác nội tiếp \( \Rightarrow \angle MID = \angle MCD\left( 1 \right);\)

\(\Delta ABC\)vuông cân \( \Rightarrow \angle ABD = 45^\circ \Rightarrow \Delta ABD\)cũng vuông cân

\( \Rightarrow \angle BAD = 45^\circ \Rightarrow \angle BAD = \angle DAC = 45^\circ \Rightarrow AD\)là tia phân giác của \(\angle BAC\)

\( \Rightarrow \Delta BAC\)cân tại A, có \(AD\)là phân giác nên đồng thời là trung trực

\( \Rightarrow MB = MC \Rightarrow \angle MBD = \angle MCD\left( 2 \right)\)

\(\left( 1 \right),\left( 2 \right) \Rightarrow \angle MID = \angle MBD = \angle MBC(dfcm)\)

c) \(HK \bot ID \Rightarrow \angle HAI + \angle IKH = 180^\circ \Rightarrow AHKI\)nội tiếp

mà \(AHMI\)cũng nội tiếp (vì \(\angle AHM = 90^\circ = \angle AIM)\)\( \Rightarrow A,H,M,K,I\)cũng thuộc đường tròn

\( \Rightarrow AMKI\)nội tiếp \( \Rightarrow \angle AMK = 90^\circ - \angle HAM = 45^\circ \)

Lại có : \(\angle DIC = \angle DMC = \angle BMD\)(MD là trung trực \(BC)\)

\( \Rightarrow \angle HMA + \angle HMB + \angle AMK = \angle HMB + \angle BMD + \angle HMA = \angle AMD = 180^\circ \)

\( \Rightarrow \angle BMK = 180^\circ \Rightarrow B,M,K\)thẳng hàng

Lời giải

Gọi \(\overline {ab} \)là số cần tìm \(\left( {a,b \in \mathbb{N}*,a,b \le 9} \right)\). Theo bài ta có hệ phương trình :

\(\left\{ \begin{array}{l}a + b = 9\\\overline {ab} = 2\overline {ba} + 18\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}a + b = 9\\8a - 19b = 18\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}a = 7\\b = 2\end{array} \right.\)(tm)

Vậy số cần tìm là \(72\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay