Giải bài toán bằng cách lập phương trình hoặc hệ phương trình :
Tìm số tự nhiên có hai chữ số, biết tổng hai chữ số của nó bằng 9, nếu lấy số đó chia cho số viết theo thứ tự ngược lại thì được thương là 2 và còn dư 18 ?
Giải bài toán bằng cách lập phương trình hoặc hệ phương trình :
Tìm số tự nhiên có hai chữ số, biết tổng hai chữ số của nó bằng 9, nếu lấy số đó chia cho số viết theo thứ tự ngược lại thì được thương là 2 và còn dư 18 ?
Quảng cáo
Trả lời:
Gọi \(\overline {ab} \)là số cần tìm \(\left( {a,b \in \mathbb{N}*,a,b \le 9} \right)\). Theo bài ta có hệ phương trình :
\(\left\{ \begin{array}{l}a + b = 9\\\overline {ab} = 2\overline {ba} + 18\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}a + b = 9\\8a - 19b = 18\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}a = 7\\b = 2\end{array} \right.\)(tm)
Vậy số cần tìm là \(72\)
Hot: 500+ Đề thi vào 10 file word các Sở Hà Nội, TP Hồ Chí Minh có đáp án 2025 (chỉ từ 100k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
\(a)MI \bot AC,MD \bot BC \Rightarrow \angle MIC + \angle MDC = 90^\circ + 90^\circ = 180^\circ \)
\( \Rightarrow MDCI\)là tứ giác nội tiếp
\(b)MDCI\)là tứ giác nội tiếp \( \Rightarrow \angle MID = \angle MCD\left( 1 \right);\)
\(\Delta ABC\)vuông cân \( \Rightarrow \angle ABD = 45^\circ \Rightarrow \Delta ABD\)cũng vuông cân
\( \Rightarrow \angle BAD = 45^\circ \Rightarrow \angle BAD = \angle DAC = 45^\circ \Rightarrow AD\)là tia phân giác của \(\angle BAC\)
\( \Rightarrow \Delta BAC\)cân tại A, có \(AD\)là phân giác nên đồng thời là trung trực
\( \Rightarrow MB = MC \Rightarrow \angle MBD = \angle MCD\left( 2 \right)\)
\(\left( 1 \right),\left( 2 \right) \Rightarrow \angle MID = \angle MBD = \angle MBC(dfcm)\)
c) \(HK \bot ID \Rightarrow \angle HAI + \angle IKH = 180^\circ \Rightarrow AHKI\)nội tiếp
mà \(AHMI\)cũng nội tiếp (vì \(\angle AHM = 90^\circ = \angle AIM)\)\( \Rightarrow A,H,M,K,I\)cũng thuộc đường tròn
\( \Rightarrow AMKI\)nội tiếp \( \Rightarrow \angle AMK = 90^\circ - \angle HAM = 45^\circ \)
Lại có : \(\angle DIC = \angle DMC = \angle BMD\)(MD là trung trực \(BC)\)
\( \Rightarrow \angle HMA + \angle HMB + \angle AMK = \angle HMB + \angle BMD + \angle HMA = \angle AMD = 180^\circ \)
\( \Rightarrow \angle BMK = 180^\circ \Rightarrow B,M,K\)thẳng hàng
Lời giải
Xét hiệu : \(\frac{{{a^3}}}{b} - \left( {{a^2} + ab - {b^2}} \right)\)
\( = \frac{{{a^3} - {a^2}b - a{b^2} + {b^3}}}{b} = \frac{{{{\left( {a - b} \right)}^2}.\left( {a + b} \right)}}{b} \ge 0\)(vì \(a,b > 0)\)
Vậy \(\frac{{{a^3}}}{b} \ge {a^2} + ab - {b^2}\)
Chứng minh tương tự : \(\frac{{{b^3}}}{c} \ge {b^2} + bc - {c^2} & & & \frac{{{c^3}}}{b} \ge {c^2} + ca - {a^2}\)
\( \Rightarrow \frac{{{a^3}}}{b} + \frac{{{b^3}}}{c} + \frac{{{c^3}}}{a} \ge ab + bc + ca\)
Dấu xảy ra \( \Leftrightarrow a = b = c\)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.